Improving asthma care through personalised risk assessment and support from a conversational agent
Lead Research Organisation:
Imperial College London
Department Name: Design Engineering (Dyson School)
Abstract
Over 5.4 million people have asthma in the UK, and despite £1Billion a year in NHS spending on asthma treatment, the national mortality rate is the highest in Europe. One of the reasons for this statistic, is that risk is often dramatically underestimated by many with asthma. This leads to neglect of early care, poor control, and eventually, hospitalisation. Therefore, improving accurate risk assessment and reduction via relevant behaviour change among people with asthma could save lives and dramatically reduce health care costs.
Our multi-sector and international team will aim to address this early-care gap by investigating a new type of low-cost, and scalable personalised risk assessment, combined with follow-up automated support for risk reduction. The technology will leverage artificial intelligence to calculate a personalised asthma risk score based on voice features and self-reported data. It will then provide personalised advice on actions that can be taken to lower risk followed by customised conversational guidance to support the process of healthy change.
We envision our work will ultimately lead to a safe and engaging system where the patients are able to see their current risk of an asthma attack after answering a series of questions, akin to clinical history taking, and record their voice. They then get ongoing customised support from an automated coach on how to reduce that risk. Any progress they make will visibly lower their risk (presented, for example, as "Strengthening their shield"), in order to make their state of asthma control more tangible and motivating.
The technology will be developed collaboratively with direct involvement from people with asthma and clinicians through co-design methods and regular feedback in order to ensure risk assessment, feedback and guidance are clinically sound, and delivered in a way that is autonomy-supportive, clear, useful, and engaging to patients.
Similar risk assessment approaches have already proven successful for improving cardiovascular and mental health, but this will be the first time personalised risk assessment is applied to asthma and integrated with support from a conversational agent.
The risk calculation and feedback will involve three novel approaches:
1) A data-driven model of asthma risk drawing on routinely collected de-identified Electronic Health Record data which will be used to identify which factors most accurately predict asthma exacerbation.
2) Machine learning techniques for detecting asthma risk from voice features (eg, wheezing, breath rate, coughing).
3) Natural Language Processing techniques for developing an autonomy-supportive conversational agent to support health behaviour change.
The project will be based at Imperial College London with clinicians and researchers from organisations in the UK, the US, and Australia. The project will also be undertaken in partnership with YourMD Ltd which will facilitate running a pilot study within their commercial app which will provide access to sufficient data for proof-of-concept testing. This will allow the algorithms to use dialogue and voice data from a larger number of participants, and will also accelerate translation for future project phases.
Our multi-sector and international team will aim to address this early-care gap by investigating a new type of low-cost, and scalable personalised risk assessment, combined with follow-up automated support for risk reduction. The technology will leverage artificial intelligence to calculate a personalised asthma risk score based on voice features and self-reported data. It will then provide personalised advice on actions that can be taken to lower risk followed by customised conversational guidance to support the process of healthy change.
We envision our work will ultimately lead to a safe and engaging system where the patients are able to see their current risk of an asthma attack after answering a series of questions, akin to clinical history taking, and record their voice. They then get ongoing customised support from an automated coach on how to reduce that risk. Any progress they make will visibly lower their risk (presented, for example, as "Strengthening their shield"), in order to make their state of asthma control more tangible and motivating.
The technology will be developed collaboratively with direct involvement from people with asthma and clinicians through co-design methods and regular feedback in order to ensure risk assessment, feedback and guidance are clinically sound, and delivered in a way that is autonomy-supportive, clear, useful, and engaging to patients.
Similar risk assessment approaches have already proven successful for improving cardiovascular and mental health, but this will be the first time personalised risk assessment is applied to asthma and integrated with support from a conversational agent.
The risk calculation and feedback will involve three novel approaches:
1) A data-driven model of asthma risk drawing on routinely collected de-identified Electronic Health Record data which will be used to identify which factors most accurately predict asthma exacerbation.
2) Machine learning techniques for detecting asthma risk from voice features (eg, wheezing, breath rate, coughing).
3) Natural Language Processing techniques for developing an autonomy-supportive conversational agent to support health behaviour change.
The project will be based at Imperial College London with clinicians and researchers from organisations in the UK, the US, and Australia. The project will also be undertaken in partnership with YourMD Ltd which will facilitate running a pilot study within their commercial app which will provide access to sufficient data for proof-of-concept testing. This will allow the algorithms to use dialogue and voice data from a larger number of participants, and will also accelerate translation for future project phases.
Publications

Cook D
(2024)
A text-based conversational agent for asthma support: Mixed-methods feasibility study.
in Digital health

Calvo RA
(2023)
Assessing the Feasibility of a Text-Based Conversational Agent for Asthma Support: Protocol for a Mixed Methods Observational Study.
in JMIR research protocols

Kallis C
(2023)
Development of an Asthma Exacerbation Risk Prediction Model for Conversational Use by Adults in England
in Pragmatic and Observational Research

Description | In the first 12 months of the project, we have developed basic statistical risk models of asthma exacerbations based on a larger (1.2M) medical records and on a set of voice recordings. We have also developed a conversational system based on a micro service architecture, with WhatsApp and Web interfaces. We involved nurses and health professionals and are getting ready to start a feasibility study with patient. So far the project is going according to plans. The implementation stage, where results are taken by the NHS or healthcare companies will start in the next phase of the project. |
Exploitation Route | Approaches to commercialisation will be developed over the second year of the project. A follow up project to measure the efficacy of the intervention, using a Randomised Control Trial is planned |
Sectors | Healthcare |
URL | http://brisa.care |
Description | IMPACT: Innovating with mHealth for people with dementia and co-morbidities |
Amount | £3,700,000 (GBP) |
Funding ID | NIHR150287 |
Organisation | National Institute for Health Research |
Sector | Public |
Country | United Kingdom |
Start | 09/2022 |
End | 10/2026 |
Title | Brisa |
Description | Brisa is a virtual assistant (chatbot) designed to help people with Asthma improve their quality of life. It has been developed by a team of researchers, doctors and nurses at Imperial College London with support from UKRI and Ashthma+Lung UK. It is designed to help those with asthma understand their risk of having an asthma attack, improve their symptoms, and reduce hospitalisations. |
Type Of Technology | Webtool/Application |
Year Produced | 2023 |
Impact | Brisa showed that chatbots are effective for asthma support, demonstrated by high usage of features like risk assessment and control tracking, and improved asthma control scores. However, lower satisfaction in conversational flexibility highlights rising expectations for chatbot fluency, influenced by advanced models like ChatGPT. Future health-focused chatbots must balance conversational capability with accuracy and safety to maintain engagement and effectiveness. 150 people used Brisa during the pilot phases. |
URL | https://brisa.care |
Description | Brisa Website |
Form Of Engagement Activity | Engagement focused website, blog or social media channel |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Public/other audiences |
Results and Impact | The website was developed to disseminate outcomes of the project, engage the general public and recruit participants |
Year(s) Of Engagement Activity | 2022,2023 |
URL | https://brisa.care |
Description | Patient group testing |
Form Of Engagement Activity | A formal working group, expert panel or dialogue |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Study participants or study members |
Results and Impact | Potential users engaged with the dialogues over several weeks and then provided structured and semi-structured feedback. Their feedback used to improve the dialogues The process is described here: https://www.researchprotocols.org/2023/1/e42965/ |
Year(s) Of Engagement Activity | 2022,2023 |
URL | https://brisa.care |
Description | Patient group workshop |
Form Of Engagement Activity | A formal working group, expert panel or dialogue |
Part Of Official Scheme? | No |
Geographic Reach | Local |
Primary Audience | Professional Practitioners |
Results and Impact | Asthma Nurses engaged to provide feedback and recommendations about the dialogues. This was done in several iterations. Activities were described in this paper https://www.researchprotocols.org/2023/1/e42965/ |
Year(s) Of Engagement Activity | 2022,2023 |
URL | https://brisa.care |