New genomic approaches to explore the neurogenetic disease burden of consanguineous marriages in Turkey

Lead Research Organisation: Newcastle University
Department Name: Institute of Genetic Medicine

Abstract

In this project three paediatric neurology departments from different parts of Turkey (Izmir, Diyrbakir, Malatya) will work together with the state-of-the-art genome centre in Izmir and a leading translational research centre in Newcastle upon Tyne (UK) in a cutting-edge new genome project. The research will address an important health-related issue for the Turkish population: the burden of neurogenetic disorders in children from consanguineous marriages.

One in four marriages in Turkey is between blood relations (consanguineous). Relatives share parts of their DNA because of their common ancestry, and in these shared regions they also share some of the same genetic faults (mutations). The risk that a child inherits the same fault from both mother and father is therefore significantly higher in consanguineous families as compared to non-consanguineous families, increasing the likelihood of recessive disorders (in which both parents have to pass on a fault for the child to get the disease).

More genes are active in the brain and nervous system than in any other part of the body. Recessive defects in these genes often lead to severe childhood disorders causing early death or severe disability including seizures, muscle weakness, breathing problems and severe learning difficulties. Thousands of children affected by neurogenetic conditions are born every year in Turkey in consanguineous families. A genetic diagnosis that would allow families to avoid having further affected children and in some cases allow effective treatment to be prescribed is rarely achieved because the underlying causes are difficult to pinpoint and the tests required have until now been expensive and time-consuming.

Rather than looking at genes one by one, it has now become possible to read the entire genetic code of a child (the whole genome) in a single test and identify faulty genes by comparing this information with the general population and healthy relatives, in particular the parents. This is especially effective in consanguineous families, as the affected child is expected to have inherited an identical fault from both father and mother. Information obtained from consanguineous families has already been helpful in the identification of disease-causing genetic faults and might also make it possible to find other genes that make the primary disease more or less severe.

In this project, expert paediatric neurologists in Turkey will carry out detailed clinical investigations of around 250 children with severe childhood disorders of the brain, nervous system or muscle and obtain blood and tiny skin samples from these children as well as their unaffected parents and affected or unaffected siblings. DNA will be extracted from the blood and will undergo genome sequencing followed by in-depth computer analysis. Potential faults in relevant genes will be identified and will be further explored to establish their function and see whether they are indeed the cause of the child's condition. This scientific work will be carried out by scientists in Newcastle and Izmir and involves the use of stem cell technology to transform skin cells into nerve cells, as well as genetic manipulation to change the genes of zebrafish embryos to recreate the problem seen in the child and help understand the function of the gene in the nervous system. Exploring these aspects in fish allows research towards the development of targeted and effective treatments for these diseases in humans. In addition to the expected discovery of at least 20 new disease-causing genes, we will also generate and share valuable data for future research, and will train the clinical and scientific workforce in Turkey in these new techniques. The information obtained will also contribute to future Turkish genome projects, and help understand the impact of consanguinity on severe childhood disorders in immigrant populations in other countries and other populations with high consanguinity rates.

Planned Impact

As well as the clinicians and researchers defined in the academic beneficiaries section, the research foreseen in this project will have an important impact on children and families affected by neurogenetic diseases, both in Turkey and beyond. Furthermore, it will impact on the Turkish healthcare and research systems and provide important data for Turkish government policy towards the issues of recessive conditions caused by consanguineous inheritance in the population.

Impact on patients and families
Neurogenetic diseases are a group of severe and chronic childhood disorders affecting the brain, the nervous system and skeletal muscle. Living with these conditions causes a significant welfare and economic burden to affected families and to the country as a whole.
--Improving diagnosis. The majority of patients with these conditions do not have a genetic diagnosis. This makes it more difficult to offer appropriate family counselling to allow reproductive choices and avoidance of future affected pregnancies through pre-implantation genetic diagnosis. By increasing diagnostic rates and discovering new genetic causes of these conditions, we will enable these families to access support appropriate for their conditions.
--Offering treatment. Although curative therapies altering the underlying genetic defect do not exist for these conditions, a number of the conditions have therapies available that can modify the disease course and improve life quality. In the majority of cases it is important to understand the underlying genetic defect in order to offer the correct treatment.
---Paving the way to future therapies. The research carried out in this project has clear translational potential, since understanding pathways and mechanisms can result in identification of new therapeutic targets. The UK partner has a strong translational research track record, including first-in-man trials in rare diseases, and this will ensure the impact of new discoveries from this project.

Impact on national policy for the consanguineous health burden
As shown in more detail in the Case for Support, as many as one in four marriages in Turkey is consanguineous, and government policy to address the health burden of recessive conditions that are more common in this population is a high priority, but needs adequate data on which to base policy. This project will generate the largest comprehensively genetically and phenotypically defined cohort of families affected by neurogenetic disorders of childhood and thus provide a rich body of data for policy planning.

Impact on the Turkish economy
The extensive upskilling of Turkish participants in genomic medicine is a main aim of the project, ensuring its legacy is a lasting benefit for the Turkish healthcare system and economy through new opportunities in the diagnostics and healthcare market. This also has an impact on potential revenue-generating activities for the country in terms of new diagnostic and healthcare services. Data, service, skills and personnel developed in the project may help to set up spin-out diagnostic services and enrich the health care market in Turkey and the wider region. The data obtained may be valuable tools for politicians and economists to plan health care provision targeted for the Turkish population and particularly consanguineous families

Publications

10 25 50
publication icon
100,000 Genomes Project Pilot Investigators (2021) 100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care - Preliminary Report. in The New England journal of medicine

publication icon
Bansagi B (2017) Genetic heterogeneity of motor neuropathies. in Neurology

publication icon
Bansagi B (2016) Phenotypic convergence of Menkes and Wilson disease. in Neurology. Genetics

 
Description Consanguineous marriages have a prevalence rate of 24% in Turkey. These carry an increased risk of autosomal recessive genetic conditions, leading to severe disability or premature death, with a significant health and economic burden. A definitive molecular diagnosis could not be achieved in these children previously, as infrastructures and access to sophisticated diagnostic options were limited. We studied the cause of neurogenetic disease in 246 children from 190 consanguineous families, recruited in three Turkish hospitals between 2016 and 2020. All patients underwent deep phenotyping and trio whole exome sequencing, and data were integrated in advanced international bioinformatics platforms. We detected causative variants in 119 known disease genes in 72% of families. Due to overlapping phenotypes 52% of the confirmed genetic diagnoses would have been missed on targeted diagnostic gene panels. Likely pathogenic variants in 27 novel genes in 14% of the families increased the diagnostic yield to 86%. Eighty-two% of causative variants (141/172) were homozygous, 11 of which were detected in genes previously only associated with autosomal dominant inheritance. Eight families carried two pathogenic variants in different disease genes. De novo (9.3%), X-linked recessive (5.2%) and compound heterozygous (3.5%) variants were less frequent compared to non-consanguineous populations. This cohort provided a unique opportunity to better understand the genetic characteristics of neurogenetic diseases in a consanguineous population. Contrary to what may be expected, causative variants were often not on the longest run of homozygosity and the diagnostic yield was lower in families with the highest degree of consanguinity, due to the high number of homozygous variants in these patients. Pathway analysis highlighted that protein synthesis/degradation defects and metabolic diseases are the most common pathways underlying paediatric neurogenetic disease. In our cohort 164 families (86%) received a diagnosis, enabling prevention of transmission and targeted treatments in 24 patients (10%). We generated an important body of genomic data with lasting impacts on the health and wellbeing of consanguineous families, and economic benefit for the healthcare system in Turkey and elsewhere. We demonstrate that an untargeted next generation sequencing approach is far superior to a more targeted gene panel approach, and can be performed without specialised bioinformatics knowledge by clinicians using established pipelines in populations with high rates of consanguinity.
Exploitation Route We are learning a lot about how to analyse genetic data and what kind of variants can be expected in consanguineous families with pediatric neurogenetic disease, We also provide a legacy of genetics in Turkey.
Sectors Communities and Social Services/Policy,Digital/Communication/Information Technologies (including Software),Healthcare,Pharmaceuticals and Medical Biotechnology

URL https://pubmed.ncbi.nlm.nih.gov/34791078/
 
Description case studies about patients with rare disease, several publications arose from the research, we are applying for new funding with the Turkish partners
First Year Of Impact 2017
Sector Digital/Communication/Information Technologies (including Software),Healthcare,Pharmaceuticals and Medical Biotechnology
Impact Types Societal

 
Description as Chair of the mitochondrial group within the ERN-NMD I participate in endorsing and making guidelines for mitochondrial diseases
Geographic Reach Europe 
Policy Influence Type Influenced training of practitioners or researchers
Impact As the Chair of the mitochondrial group within the EURO-NMD reference network I participate in making diagnosis and management of patients with mitochondrial diseases harmonised in Europe
URL https://ern-euro-nmd.eu/
 
Description Horizon 2020
Amount € 15,000,000 (EUR)
Organisation European Union 
Sector Public
Country European Union (EU)
Start 01/2018 
End 12/2023
 
Description Investigate new treatment options in zebrafish models of mtDNA depletion syndromes
Amount £62,432 (GBP)
Organisation The Lily Foundation 
Sector Charity/Non Profit
Country United Kingdom
Start 08/2019 
End 07/2021
 
Title BN-PAGE 
Description functional analysis of human patient cell lines 
Type Of Material Cell line 
Provided To Others? No  
Impact we revealed the pathomechanism of mitochondrial disease in 20 patients 
 
Title TRMU cells 
Description we have obtained cells (fibrobalsts and myoblasts) from a patient and established a special technique to study 2-thiolation of mt-tRNAs 
Type Of Material Cell line 
Provided To Others? No  
Impact We are currently investigating the possible role of 2-thiolation as a possible disease mechanism in reversible COX deficiency as part of the project 
 
Title induced neuronal progenitor cells 
Description We can successfully convert human finroblasts into induced neuronal progenitor cells. 
Type Of Material Model of mechanisms or symptoms - human 
Provided To Others? No  
Impact We have already converted 4 patient and 2 contol cell lines into induced neuronal progenitor cells. Currently the analysis of mitochondrial function is in progress in these cells. 
 
Title studying the neuromuscular junction 
Description co-investigator on a multi-user equipment funded by Wellcome to study electrophysiology of the neuromuscular junction 
Type Of Material Physiological assessment or outcome measure 
Year Produced 2018 
Provided To Others? Yes  
Impact no impact yet, equipment is currently being set up 
 
Title zebrafish 
Description I used zebrafish to model human disease. 
Type Of Material Model of mechanisms or symptoms - mammalian in vivo 
Provided To Others? No  
Impact Published a paper (Boczonadi et al. 2014) 
 
Title bioinformatic analysis of RNAseq 
Description performed RNAseq in several human cell and muscle samples and analysed different parameters to gain understanding of the metabolic signature of neurogenetic diseases 
Type Of Material Data analysis technique 
Year Produced 2017 
Provided To Others? No  
Impact papers are currently in progress 
 
Title proteomic analysis of cells/tissues 
Description performed proteomic analysis of paatient cells and skeletal muscle samples 
Type Of Material Data analysis technique 
Year Produced 2017 
Provided To Others? Yes  
Impact papers in progress 
 
Description Consequitur - cohort of patients from Turkey for WES 
Organisation Dokuz Eylül University
Country Turkey 
Sector Academic/University 
PI Contribution We collaborate with Dr. Yavuz Oktay and Dr. Semra Hiz on identiying new disease genes in consanguineous Turkish families with various neurogenetic diseases.
Collaborator Contribution Collected 400 families and DNA samples, perfomred phenotyping
Impact We are currently writing abstracts for conferences from the first results and drafting papers.
Start Year 2016
 
Description Identifying novel disease genes in hereditary motor neuropathies 
Organisation University of Miami
Country United States 
Sector Academic/University 
PI Contribution We have identified mutations in a novel disease gene in a family with autosomal dominant hereditary motor neuropathy.
Collaborator Contribution The collaborators also had one family with another mutation in the same gene.
Impact We have published a paper together in AJHG.
Start Year 2014
 
Description Metablic testing of serum and lymphoblastoid cells of patients with motor neuropathy 
Organisation University of Antwerp
Country Belgium 
Sector Academic/University 
PI Contribution We collected serum and blood samples of patients with hereditary motor neuropathies and Prof. Vincent Timmermann`s group converted them to lymphoblastoid cells and conduct metabolomics studies
Collaborator Contribution Prof. Timmermann`s group convert the blood cells to lymphoblastoid cells.
Impact samples are currently being analysed
Start Year 2016
 
Description Metabolic measurements in mitochondrial carrier protein deficiency 
Organisation University of Cambridge
Country United Kingdom 
Sector Academic/University 
PI Contribution We have patient samples for metabolic measurements to Dr. Christian Frezza`s laboratory.
Collaborator Contribution We will receive the results soon and will have a joint publication.
Impact no output yet
Start Year 2013
 
Description NGS of undiagnosed neuromuscular and neurodegenerative patients 
Organisation Broad Institute
Country United States 
Sector Charity/Non Profit 
PI Contribution Selection of cases
Collaborator Contribution Provision of NGS data
Impact See publication list
Start Year 2013
 
Description Next Generation Sequencing 
Organisation Broad Institute
Country United States 
Sector Charity/Non Profit 
PI Contribution Prof. Daniel McArthur`s group in the Broad Institute agreed to perform WES in >300 Turkish families with neurogenetic disease.
Collaborator Contribution Performed WES for free.
Impact currently writing up conference abstracts and papers.
Start Year 2016
 
Description Studying 2-thiolation of mt-tRNA Glu, Lys, Gln 
Organisation McGill University
Department Department of Molecular Neurogenetics
Country Canada 
Sector Academic/University 
PI Contribution I have started to collaborate on the function of TRMU
Collaborator Contribution common publication
Impact There is a Hom Mol Genet paper (Sasarman et al. 2011) already out of this collaboration.
Start Year 2011
 
Description Studying a novel mitochondrial carriers in a patient mitochondrial disease 
Organisation Medical Research Council (MRC)
Department MRC Mitochondrial Biology Unit
Country United Kingdom 
Sector Academic/University 
PI Contribution We identified a patient with mutations in a novel mitochondrial carrier protein.
Collaborator Contribution Dr. Edmund Kunji`s laboratory performed functional analysis of the carrier to prove that the mutation is pathogenic.
Impact We are currently drafting a manuscript.
Start Year 2014
 
Description Studying the function of the exosome in human disease. 
Organisation Hebrew University of Jerusalem
Department Hebrew University Hadassah Medical School
Country Israel 
Sector Academic/University 
PI Contribution We have identified a novel disease gene and performed functional studies.
Collaborator Contribution The partner had another family with mutations in the same gene.
Impact We published a nice paper together (Boczonadi et al. 2014)
Start Year 2014
 
Description TEFM 
Organisation Monash University
Country Australia 
Sector Academic/University 
PI Contribution We are working together on proving the pathogenicity of novel genes causing mitochondrial protein synthesis defect.
Collaborator Contribution Exchanging cell lines, collecting data.
Impact not yet, paper in progress
Start Year 2019
 
Description confirming the role of PTPMT1 in human disease 
Organisation University College London
Department Institute of Neurology
Country United Kingdom 
Sector Academic/University 
PI Contribution We made a zebrafish model of this novel gene and supported that it causes decreased cardiolipin and movement problems.
Collaborator Contribution The UCL team (Rob Pitceathly) identified another patient and did cardiolipin studies.
Impact paper is currently being drafted
Start Year 2020
 
Description mitochondrial fusion/fission 
Organisation Pontifical Catholic University of Chile
Country Chile 
Sector Academic/University 
PI Contribution I have sent cell lines to Dr. Veronica Eisner for studiying mitochondrial fusion/fission.
Collaborator Contribution studying mitochondrial fission in cells with a special technique
Impact A novel mechanism causing imbalance of mitochondrial fusion and fission in human myopathies. Bartsakoulia M, Pyle A, Troncosco D, Vial J, Paz-Fiblas MV, Duff J, Griffin H, Boczonadi V, Lochmüller H, Kleinle S, Chinnery PF, Grünert S, Kirschner J, Eisner V, Horvath R. Hum Mol Genet. 2018 Jan 19. doi: 10.1093/hmg/ddy033. [Epub ahead of print] PMID: 29361167
Start Year 2015
 
Description mitochondrial tRNA synthetase related diseases 
Organisation University of Manchester
Country United Kingdom 
Sector Academic/University 
PI Contribution I started a collaboration with Prof. William Newman on mt tRNA synthetase diseases. I sent him DNA samples of patients with potential Perrault syndrome.
Collaborator Contribution Dr. Newmn is sequencing with a NGS panel novel genes which could cause Perrault syndrorme.
Impact no output yet
Start Year 2015
 
Description search for biomarkers in CMT 
Organisation University of Antwerp
Country Belgium 
Sector Academic/University 
PI Contribution We have performed targeted proteomics on serum of patients with CMT. We extended the analysis on mouse models of CMT.
Collaborator Contribution We have received serum from mouse models of CMT from Prof. Vincent Timmermann`s team. We search for biomarkers in CMT in this collaboration.
Impact submitted an abstract to the UK MRC Translational Research Conference (22-23 April, UCL)
Start Year 2019
 
Description studying novel genes affecting mitochondrial dynamics 
Organisation University College London
Department Institute of Neurology
Country United Kingdom 
Sector Academic/University 
PI Contribution Workring on zebrafish model of the disease
Collaborator Contribution exchanging cells, working on the pathomechanism of a novel gene
Impact not yet
Start Year 2020
 
Title A Study of Bezafibrate in Mitochondrial Myopathy" (NUTH NHS Trust, 2015) 
Description We are testing the feasibility of bezafibrate supplementation in MELAS. Trial has been finished. We published the paper very recently in EMBO Mol Med 
Type Therapeutic Intervention - Drug
Current Stage Of Development Early clinical assessment
Year Development Stage Completed 2019
Development Status Under active development/distribution
Impact trial has not shown clinical benefit 
 
Description Genetic Matters 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Patients, carers and/or patient groups
Results and Impact Postdoctoral research associates from my group participated in the organisation of the "Genetic Matters" event in the Centre for Life. Patients, students and general public attended the event or rare genetic diseases.
Year(s) Of Engagement Activity 2017
 
Description Organizing SHORT VIDEO AND a lightshow for the Mitochondrial Awareness week 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Supporters
Results and Impact We organized a lightshow and produced a short video for the Mitochondrial Awareness Week.
Year(s) Of Engagement Activity 2020
 
Description Participating with a demonstration of zebrafish research at the Newcastle High School for Girls research day 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact We had a table at the STEM Research Day of Newcastle High School for Girls.
Year(s) Of Engagement Activity 2017
 
Description creating video about patient journey for European Joint Program 
Form Of Engagement Activity A press release, press conference or response to a media enquiry/interview
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Media (as a channel to the public)
Results and Impact We actively participated in making a video about a patient journey of a Turkish patient who we dignosed within our research for the European Joint Program activities.
Year(s) Of Engagement Activity 2019
URL https://twitter.com/GA4GH/status/1186993739991900165?s=17