New Phase Field Models for Unravelling Multi-Physics Material Degradation Challenges (NEWPHASE)

Lead Research Organisation: Imperial College London
Department Name: Civil & Environmental Engineering

Abstract

The biggest scientific and engineering challenges often lie in between disciplines. Through the years, we have gained a good understanding of how materials behave when subjected to mechanical loads (solid mechanics). We also understand the nature of the chemical reactions occurring when materials are exposed to a given environment (electrochemistry). However, predicting material behaviour due to combined exposure to mechanical loads and a degrading environment continues to be an elusive goal. Not being able to understand and predict electro-chemo-mechanics phenomena comes at a great cost since materials are very sensitive to environmental and mechanical degradation in many applications. The value of the fundamental science conducted in this fellowship will be demonstrated on two of these applications: (1) corrosion damage, and (2) Li-Ion batteries. Their importance cannot be emphasised enough. Solely in the UK, failure of structures and industrial components due to corrosion entails a staggering cost of £46 billion per annum. Li-Ion batteries are key enablers in achieving universal access to reliable, clean, sustainable energy.

Now, there is an opportunity to develop models that can prevent corrosion failures and significantly enhance progress in battery technology. Larger computer resources and new algorithms enable simulating concurrent (coupled) physical processes such as chemical reactions, diffusion of species and mechanical deformation; so-called multi-physics modelling. However, the opportunity of building upon the success of multi-physics simulations to predict material degradation is held back due to our inability to model how the boundary between two different phases develops over time. For example, corrosion is often non-uniform, leading to small defects (pits) that grow and act as crack initiators. Preventing the associated catastrophic failures, such as the Morandi Bridge collapse, requires capturing how these defects will nucleate at the electrolyte-material interface and grow. But the modelling of morphological changes in an evolving interface has been long considered a mathematical and computational challenge. I will overcome this longstanding obstacle by smearing the "sharp" interface over a small diffuse region using an auxiliary "phase field" variable - a paradigm change that will make tracking of evolving interfaces amenable to numerical computations. A new generation of models will be developed and validated with powerful 3D techniques such as X-ray Computed Tomography, which have timely experienced notable improvements in spatial resolution and image reconstruction times. By explicitly capturing the damage process, this fellowship will not only open new horizons in the understanding of multi-physics material degradation phenomena but also set the basis for the introduction of simulation-based assessment in engineering practice; model predictions can be compared with inspection data, introducing the "Digital Twins" and "Virtual Testing" paradigms into engineering applications involving demanding environments.

The near-term societal impact will be demonstrated by addressing salient technological problems in offshore energy, batteries, water supply networks and nuclear fission. Efforts will be guided by the fellowship advisory board, which includes leading firms in each of these sectors: EDF Energy, Rolls-Royce, SUEZ, PA Consulting, Vattenfall and Subsea7. For example, the new generation of models developed will be used to assist in the life extension decision of the oldest large-scale wind farm in the world, Horns Rev 1. The lessons learned in this world-first engineering assessment will set an example for the entire sector and demonstrate the potential of computer simulations in enhancing the economic viability of the leading renewable energy source. The successful fellowship will lay scientific foundations for new engineering solutions that will improve UK's competitiveness and our quality of life.

Publications

10 25 50

publication icon
Fernández-Sousa R (2022) Cohesive zone modelling of hydrogen assisted fatigue crack growth: The role of trapping in International Journal of Fatigue

publication icon
Golahmar A (2022) A phase field model for hydrogen-assisted fatigue in International Journal of Fatigue

publication icon
Golahmar A (2023) A phase field model for high-cycle fatigue: Total-life analysis in International Journal of Fatigue

 
Description The first year of this UKRI Future Leaders Fellowship has enabled demonstrating that the combination of phase field and multi-physics modelling can open new horizons in the prediction of material behaviour across three main areas: (i) solid-state battery degradation, (ii) fracture of mechanics and structures, and (iii) corrosion. The models developed have enable conducting simulation-based assessments that should enable the development of durable solid-state batteries, the prediction of structural integrity failures, and the quantification of corrosion damage.
Exploitation Route The formulations and models developed will enable scientists and engineers to predict material degradation in physical systems where interface evolution is a dominant player, ranging from the growth of crevasses in large ice-sheets to the short-circuiting of solid-state batteries as a result of void evolution and dendrite formation. To maximise impact, the finite element codes developed have been made available for download (https://www.imperial.ac.uk/mechanics-materials/codes/).
Sectors Aerospace, Defence and Marine,Construction,Energy,Manufacturing, including Industrial Biotechology,Transport

 
Description The work conducted has led to industrial contracts and research projects that will make use of the models developed to enable the next generation of solid-state batteries and to design structures and components resistant to hydrogen embrittlement.
First Year Of Impact 2022
Sector Aerospace, Defence and Marine,Energy
Impact Types Societal,Economic

 
Title ABAQUS UMAT subroutine to implement phase field fracture with a Drucker-Prager criterion 
Description ABAQUS UMAT user subroutine for implementing a generalised version of phase field fracture allowing for any fracture driving force split (including Drucker-Prager) and any choice of crack density function. 
Type Of Material Computer model/algorithm 
Year Produced 2022 
Provided To Others? Yes  
Impact The finite element code provided enables extending the success of phase field fracture models to geomaterials and enriching phase field models with any failure surface. 
URL https://www.imperial.ac.uk/mechanics-materials/codes/
 
Title COMSOL Physics builder to predict hydrogen uptake in metals 
Description This is a new module that can be incorporated into the commercial finite element package COMSOL to predict hydrogen uptake in metals. 
Type Of Material Computer model/algorithm 
Year Produced 2022 
Provided To Others? Yes  
Impact The model provides the first formulation and numerical implementation for resolving the electrochemical-diffusion interface, enabling quantifying hydrogen ingress, the main unknown in the modelling and prevention of hydrogen-assisted fractures and a fundamental element in the design of efficient hydrogen electrolysers. No other model capable of doing this exists (either commercial or scientific). 
URL https://www.imperial.ac.uk/mechanics-materials/codes/
 
Title Finite element model for predicting fatigue cracks in Li-Ion battery materials 
Description COMSOL implementation of a coupled deformation-diffusion-fracture/fatigue phase field-based model with application to cracking in Li-Ion battery electrode particles 
Type Of Material Computer model/algorithm 
Year Produced 2022 
Provided To Others? Yes  
Impact The model enables predicting for the first time the degradation of batteries due to electrode particle cracking as a function of the number of charging cycles. As a result, the model has been used to map safe regimes of operation. 
URL https://www.imperial.ac.uk/mechanics-materials/codes/
 
Title MATLAB code to predict hydrogen uptake using lumped integration 
Description Finite element MATLAB code for electrochemical reactions, using lumped integration for efficiency and robustness, and particularised to the case of hydrogen uptake. 
Type Of Material Computer model/algorithm 
Year Produced 2023 
Provided To Others? Yes  
Impact The code developed is significantly more robust and orders of magnitude faster than the only existing code available for predicting hydrogen uptake (which was developed by us using the platform COMSOL). This is because of a lumped integration technique developed, which is now being considered for implementation in several commercial finite element packages. The improvements in stability and efficiency enable simulating for the first time hydrogen uptake over scales relevant to engineering practice. 
URL https://www.imperial.ac.uk/mechanics-materials/codes/
 
Description Research project funded by EPRI 
Organisation Electric Power Research Institute (EPRI)
Country United States 
Sector Charity/Non Profit 
PI Contribution The phase field models developed in the grant will be used together with EPRI to predict the behaviour of metallic components in hydrogen-containing environments.
Collaborator Contribution Our industrial partners EPRI provide valuable data and guide simulation-based assessment. In addition, they have also provided relevant materials.
Impact For the first time, "Virtual Testing" of components and structures exposed to hydrogen is being carried out.
Start Year 2022
 
Description Research project funded by TENARIS 
Organisation Tenaris SA
Country Luxembourg 
Sector Private 
PI Contribution The phase field models developed in the grant will be used together with Tenaris to predict the behaviour of metallic components in hydrogen-containing environments.
Collaborator Contribution Our industrial partners Tenaris provide valuable data and guide simulation-based assessment.
Impact For the first time, "Virtual Testing" of components and structures exposed to hydrogen is being carried out.
Start Year 2022
 
Description Stand at the Exhibition Road Festival 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Public/other audiences
Results and Impact A stand was presented in the Exhibition Road Festival, showcasing the latest findings of our active research grants and more generally disseminating our activities. The event attracts tens of thousands of attendees over a weekend.
Year(s) Of Engagement Activity 2022
URL https://www.greatexhibitionroadfestival.co.uk/