Dissecting, and revealing the controls on, the group-specific CO2 fixation budget of the Atlantic Ocean

Lead Research Organisation: National Oceanography Centre
Department Name: Science and Technology

Abstract

The oceans play a major role in determining world climate. In part this is due to the production of oxygen and the consumption of carbon dioxide (CO2) by very small, single celled photosynthetic organisms, the picophytoplankton. Picophytoplankton biomass is dominated by three main groups: the prokaryotic genera Prochlorococcus and Synechococcus, and eukaryotes comprising cells <5 micrometres in size. However, little is known of what goes on inside the picophytoplankton 'black box' particularly with respect to the distribution of carbon biomass and group-specific primary production, information which is fundamental to understanding the roles of these groups in the global C cycle. Very recently our team has optimised utilisation of radiotracer incubation-flow cytometric sorting technology, to reveal group-specific CO2 fixation rates at several stations in the North Atlantic. As well as revealing variability in group-specific CO2 fixation rates between sites this data reiterates the importance of the eukaryotic fraction in primary production estimates (contribution 25-50% dependent on location) even though numerically they are vastly outnumbered by their prokaryotic counterparts. Here, we propose to extend this work so that for the first time we can reveal group-specific CO2 fixation rates at the basin scale, as well as in both surface waters and at the deep chlorophyll maximum (DCM). We will perform this work along an Atlantic Meridional Transect, which traverses the Atlantic Ocean between the UK and the Falkland Islands, and in consecutive years, so that i) a complete group-specific CO2 fixation budget of the Atlantic Ocean is attained and ii) inter-annual variability can be assessed. Moreover, we will examine the precise contribution of different taxonomic lineages to the picoplankton group rates using fluorescent in situ hybridisation of sorted populations and lineage-specific oligonucleotide probes for the prokaryotic genera (Synechococcus and Prochlorococcus) or class-specific probes for the photosynthetic picoeukaryote (PPE) fraction. Hence, this project will provide fundamental information of the major 'players' and routes of CO2 fixation in situ, a process that underpins marine C cycling. Furthermore, we will investigate environmental control of group-specific C fixation rates using on-board bottle experiments following either nutrient addition or shifts in irradiance. This will allow us to understand how environmental perturbation controls the CO2 fixation potential of specific groups. We will couple this latter work with a functional genomics (transcriptomics) approach specifically targeted at the PPE fraction to provide a complementary molecular assessment of the potential regulatory factors controlling this group. This is based on the idea that transcriptional profiling will 'let the organism inform us of the key environmental parameters that these organisms are responding to'. Taken together this work will make major inroads in our understanding of the routes and controls of marine CO2 fixation, information which is essential for a predictive understanding of marine C cycling.

Publications

10 25 50
 
Description Global estimates indicate the oceans are responsible for approximately half of the carbon dioxide fixed on Earth. Organisms <= 5 mu m in size dominate open ocean phytoplankton communities in terms of abundance and CO(2) fixation, with the cyanobacterial genera Prochlorococcus and Synechococcus numerically the most abundant and more extensively studied compared with small eukaryotes. However, the contribution of specific taxonomic groups to marine CO(2) fixation is still poorly known. In this study, we show that among the phytoplankton, small eukaryotes contribute significantly to CO(2) fixation (44%) because of their larger cell volume and thereby higher cell-specific CO(2) fixation rates. Within the eukaryotes, two groups, herein called Euk-A and Euk-B, were distinguished based on their flow cytometric signature. Euk-A, the most abundant group, contained cells 1.8 +/- 0.1 mu m in size while Euk-B was the least abundant but cells were larger (2.8 +/- 0.2 mu m). The Euk-B group comprising prymnesiophytes (73 +/- 13%) belonging largely to lineages with no close cultured counterparts accounted for up to 38% of the total primary production in the subtropical and tropical northeast Atlantic Ocean, suggesting a key role of this group in oceanic CO(2) fixation.
Exploitation Route Through publications and data submitted to BODC
Sectors Education,Environment