The evolutionary dynamics of multiazole resistance in pathogenic Aspergillus fungi
Lead Research Organisation:
Imperial College London
Department Name: School of Public Health
Abstract
The fungus Aspergillus fumigatus is globally ubiquitous in the environment, being present on decaying vegetation and in soils, where it performs a valuable role in nutrient recycling. The fungus is a minimal health threat to healthy individuals. However, patients that suffer from cystic fibrosis, cancer or have received organ transplants and are undergoing corticosteroid therapy, are at risk from 'invasive aspergillosis'. Current estimates indicate that over 63,000 patients develop this fungal disease annually across Europe. The primary method for controlling infections is by administering azole antifungal drugs. However, we and others have shown a sharp increase in the resistance of A. fumigatus to frontline azole antifungals, with unacceptably high mortality rates in these at-risk patient groups. The mutations that confer resistance of A. fumigatus to these drugs appear to have evolved in the environment, rather than in the patient. Azole compounds are also used as fungicides to control crop diseases. This has led to the hypothesis that the widespread use in agricultural crops of azole antifungal sprays is leading to the environmental selection for resistance in A. fumigatus, which is then resulting in decreased patient survival following infection.
Our project aims to examine this hypothesis by determining the relative proportions of azole-resistant and azole-sensitive A. fumigatus in the UK by sampling environmental populations using growth media containing antifungal drugs. This environmental exposure assessment approach will target a range of environments that have had high to low applications of crop-antifungals and will enable us to statistically examine whether there are links between the intensive use of these azole-based compounds in the environment and the occurrence of drug-resistant A. fumigatus.
We will then use powerful technologies to sequence the genomes of many hundreds of A. fumigatus that are sensitive, or resistant, to azole antifungals. We already have numerous isolates pre-collected from around the world though a broad network of project partners, and we now know that there are two main azole-resistance mutations that widely occur. Our plan is to use our genome sequences and cutting-edge statistical genetic methods in order to determine when and where these mutations originated globally, use our newly isolated samples to test whether they occur within the UK environment and patient populations, whether they are spreading to invade new environments here and elsewhere, and whether novel undescribed resistance mutations exist.
A. fumigatus is capable of sexual, as well as asexual, reproduction. In this case, the rate at which a newly-evolved resistance mutation can be integrated into new genetic backgrounds depends on the fertility of the A. fumigatus populations. In order to directly measure the 'sexiness' of the A. fumigatus populations, we will perform sexual crosses using sequenced isolates that represent not only the range of genetic diversity that we encounter, but also the range of azole-resistance mutations. By measuring the number and fitness of progeny, we will be able to determine the rate at which resistance mutations can recombine into new genetic backgrounds, and also discover unknown drug-resistance mechanisms.
By addressing these questions, we will directly measure the risk that the use of antifungal compounds has on evolving resistance in non-target fungal species, and also answer important questions on the distance that these airborne fungi are able to spread and share genes with one another. Our findings will not only be of high relevance to health care professionals, directly informing diagnostic protocols and disease management in intensive-care settings, but will also inform current debates on the costs of widespread use of antimicrobial compounds in the environment. These goals all directly feed into NERCs new strategic direction 'The Business of the Environment'.
Our project aims to examine this hypothesis by determining the relative proportions of azole-resistant and azole-sensitive A. fumigatus in the UK by sampling environmental populations using growth media containing antifungal drugs. This environmental exposure assessment approach will target a range of environments that have had high to low applications of crop-antifungals and will enable us to statistically examine whether there are links between the intensive use of these azole-based compounds in the environment and the occurrence of drug-resistant A. fumigatus.
We will then use powerful technologies to sequence the genomes of many hundreds of A. fumigatus that are sensitive, or resistant, to azole antifungals. We already have numerous isolates pre-collected from around the world though a broad network of project partners, and we now know that there are two main azole-resistance mutations that widely occur. Our plan is to use our genome sequences and cutting-edge statistical genetic methods in order to determine when and where these mutations originated globally, use our newly isolated samples to test whether they occur within the UK environment and patient populations, whether they are spreading to invade new environments here and elsewhere, and whether novel undescribed resistance mutations exist.
A. fumigatus is capable of sexual, as well as asexual, reproduction. In this case, the rate at which a newly-evolved resistance mutation can be integrated into new genetic backgrounds depends on the fertility of the A. fumigatus populations. In order to directly measure the 'sexiness' of the A. fumigatus populations, we will perform sexual crosses using sequenced isolates that represent not only the range of genetic diversity that we encounter, but also the range of azole-resistance mutations. By measuring the number and fitness of progeny, we will be able to determine the rate at which resistance mutations can recombine into new genetic backgrounds, and also discover unknown drug-resistance mechanisms.
By addressing these questions, we will directly measure the risk that the use of antifungal compounds has on evolving resistance in non-target fungal species, and also answer important questions on the distance that these airborne fungi are able to spread and share genes with one another. Our findings will not only be of high relevance to health care professionals, directly informing diagnostic protocols and disease management in intensive-care settings, but will also inform current debates on the costs of widespread use of antimicrobial compounds in the environment. These goals all directly feed into NERCs new strategic direction 'The Business of the Environment'.
Planned Impact
Our research project will benefit a broad range of stakeholders;
Health practitioners and clinicians:
As argued recently in the Lancet by Barnes et al (2014, Vol. 384, p1427), triazole drugs are the only effective oral treatment for invasive aspergillosis and pan-azole resistance in the UK is on the increase. The results of our reasearch are urgently needed by health-care practitioners as there is currently uncertainty as to i) the extent to which triazole resistance is aquired in vivo or is originating in the environment and ii) whether characteristic resistance mutations need to be screened at the bedside in immunocompromised patients / susceptible patients (such as transplant or cystic fibrosis patients) in order to optimise timely treatment. The project will address these questions and will constitute a valuable resource for the health-care community not only in the UK but also elsewhere.
Public Health Authorities:
Our findings are of immediate interest to Public Health England and the Environment Agency, whom are both Project Partners on our application. Our results will feed directly into policy questions surrounding the risk of generating and amplifying antifungal resistance in the environment as a by-product of intensive agribusiness.
Agribusiness:
Our findings are of immediate interest to current debates surrounding the use of various classes of antifungal compounds in agriculture as well as industrial composting factories, and will inform future methodologies to minimise exposure of non-target fungal species to high levels of triazole compounds.
The pharmaceutical industry:
The type and frequency of antifungal mutations that we characterise will be of high interest to those in the pharmaceutical industry whom are developing and optimising antifungal therapies; these pharamaceutical companies include Gilead and Astrazeneca.
The lay public:
Individuals have a right to know the risks that are associated with the intensive use of antifungal compounds in the environment, and how this may effect their health. This project will directly address the publics right to be informed.
How will they benefit?
Methodological contribution:
Scientists interested in the biology and epidemiology of A. fumigatus STRAf genotyping will benefit from our new R-based toolkit for the analysis of A. fumigatus STR profiles. This free software will implement standard population genetics approaches for quantifying and exploring genetic diversity, as well as cutting edge methodology for assessing and describing population structure. It will also implement statistical prediction of antifungal resistance based on STR profiles of the isolates considered. This development will be undertaken in close collaboration with members of the different collaborating laboratories to ensure relevance and address potential practical issues and optimize data analysis pipelines.
To maximize the impact of our methodological contribution, the tools developed during the project will be presented during the workshop we will organise in the third year of the project (see 'workshop' section below).
Workshop:
In the third year of the project we will hold a two-day workshop at St Mary's hospital, London, on the outputs of the project to-date and to integrate our findings with other centres of activity in the UK, such as the Manchester National Aspergillosis Centre and the BBSRC Rothamsted Research Station. This will enable us to write a White Paper that is aimed at policy makers, politicians and the media that will summarise the state of our understanding around the genomics of Aspergillosis antifungal resistance in the UK, and will also focus future research and policy directions. This will also be the occasion to introduce the tools developed for the characterisation of A. fumigatus isolates based on STR data, through lectures and hands-on practicals.
Health practitioners and clinicians:
As argued recently in the Lancet by Barnes et al (2014, Vol. 384, p1427), triazole drugs are the only effective oral treatment for invasive aspergillosis and pan-azole resistance in the UK is on the increase. The results of our reasearch are urgently needed by health-care practitioners as there is currently uncertainty as to i) the extent to which triazole resistance is aquired in vivo or is originating in the environment and ii) whether characteristic resistance mutations need to be screened at the bedside in immunocompromised patients / susceptible patients (such as transplant or cystic fibrosis patients) in order to optimise timely treatment. The project will address these questions and will constitute a valuable resource for the health-care community not only in the UK but also elsewhere.
Public Health Authorities:
Our findings are of immediate interest to Public Health England and the Environment Agency, whom are both Project Partners on our application. Our results will feed directly into policy questions surrounding the risk of generating and amplifying antifungal resistance in the environment as a by-product of intensive agribusiness.
Agribusiness:
Our findings are of immediate interest to current debates surrounding the use of various classes of antifungal compounds in agriculture as well as industrial composting factories, and will inform future methodologies to minimise exposure of non-target fungal species to high levels of triazole compounds.
The pharmaceutical industry:
The type and frequency of antifungal mutations that we characterise will be of high interest to those in the pharmaceutical industry whom are developing and optimising antifungal therapies; these pharamaceutical companies include Gilead and Astrazeneca.
The lay public:
Individuals have a right to know the risks that are associated with the intensive use of antifungal compounds in the environment, and how this may effect their health. This project will directly address the publics right to be informed.
How will they benefit?
Methodological contribution:
Scientists interested in the biology and epidemiology of A. fumigatus STRAf genotyping will benefit from our new R-based toolkit for the analysis of A. fumigatus STR profiles. This free software will implement standard population genetics approaches for quantifying and exploring genetic diversity, as well as cutting edge methodology for assessing and describing population structure. It will also implement statistical prediction of antifungal resistance based on STR profiles of the isolates considered. This development will be undertaken in close collaboration with members of the different collaborating laboratories to ensure relevance and address potential practical issues and optimize data analysis pipelines.
To maximize the impact of our methodological contribution, the tools developed during the project will be presented during the workshop we will organise in the third year of the project (see 'workshop' section below).
Workshop:
In the third year of the project we will hold a two-day workshop at St Mary's hospital, London, on the outputs of the project to-date and to integrate our findings with other centres of activity in the UK, such as the Manchester National Aspergillosis Centre and the BBSRC Rothamsted Research Station. This will enable us to write a White Paper that is aimed at policy makers, politicians and the media that will summarise the state of our understanding around the genomics of Aspergillosis antifungal resistance in the UK, and will also focus future research and policy directions. This will also be the occasion to introduce the tools developed for the characterisation of A. fumigatus isolates based on STR data, through lectures and hands-on practicals.
Organisations
- Imperial College London (Lead Research Organisation)
- ENVIRONMENT AGENCY (Project Partner)
- University of Leuven (Project Partner)
- CWZ (Canisius-Wilhelmina Hospital) (Project Partner)
- PUBLIC HEALTH ENGLAND (Project Partner)
- University of Sydney (Project Partner)
- University of California, Davis (Project Partner)
- Statens Serum Institut (Project Partner)
- University of Delhi (Project Partner)
Publications
Abdolrasouli A
(2018)
Surveillance for Azole-Resistant Aspergillus fumigatus in a Centralized Diagnostic Mycology Service, London, United Kingdom, 1998-2017.
in Frontiers in microbiology
Abdolrasouli A
(2018)
High prevalence of triazole resistance in clinical Aspergillus fumigatus isolates in a specialist cardiothoracic centre.
in International journal of antimicrobial agents
Abdolrasouli A
(2022)
Phenotypic Variants of Azole-Resistant Aspergillus Fumigatus that Co-exist in Human Respiratory Samples are Genetically Highly Related.
in Mycopathologia
Armstrong-James D
(2020)
Confronting and mitigating the risk of COVID-19 associated pulmonary aspergillosis.
in The European respiratory journal
Auxier B
(2023)
The human fungal pathogen Aspergillus fumigatus can produce the highest known number of meiotic crossovers.
in PLoS biology
Bottery MJ
(2024)
Elevated mutation rates in multi-azole resistant Aspergillus fumigatus drive rapid evolution of antifungal resistance.
in Nature communications
Brackin AP
(2020)
A Low-Cost Tebuconazole-Based Screening Test for Azole-Resistant Aspergillus fumigatus.
in Current protocols in microbiology
De Carvalho J
(2021)
Exploring genetic diversity, population structure, and phylogeography in Paracoccidioides species using AFLP markers
in Studies in Mycology
De Carvalho JA
(2020)
Genome-wide mapping using new AFLP markers to explore intraspecific variation among pathogenic Sporothrix species.
in PLoS neglected tropical diseases
Farrer RA
(2017)
Describing Genomic and Epigenomic Traits Underpinning Emerging Fungal Pathogens.
in Advances in genetics
| Description | We have found that drug-resistant fungi (azole resistant Aspergillus fumigatus) is widespread in UK urban regions - principally London. This shows that there is a public-health risk owing to the growth of this fungus in urban locations. |
| Exploitation Route | The Environment Agency, Public Health England, and Public Health Wales are working with us to enable further surveillance and understanding of this AMR bioaerosol threat. |
| Sectors | Agriculture Food and Drink Environment Pharmaceuticals and Medical Biotechnology |
| Description | Data from the study contributed to the DEFRA Air Quality Expert Group report on indoor air quality: https://uk-air.defra.gov.uk/library/reports.php?report_id=1101 Data from the study and input from PI contributed to the CMO Chief Medical Officer report https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1121599/executive-summary-and-recommendations-air-pollution.pdf |
| First Year Of Impact | 2022 |
| Sector | Healthcare |
| Impact Types | Policy & public services |
| Description | House of Commons Science Innovation and Technology committee |
| Geographic Reach | Local/Municipal/Regional |
| Policy Influence Type | Contribution to a national consultation/review |
| Impact | Member of Parliament recognition of impact of emergence of resistance in the environment; increases in exposure to fungi in homes |
| URL | https://committees.parliament.uk/event/20606/formal-meeting-oral-evidence-session/ |
| Description | Understanding and mitigating the impact of emerging antifungal resistance |
| Amount | £2,200,879 (GBP) |
| Funding ID | 219551/Z/19/Z |
| Organisation | Wellcome Trust |
| Sector | Charity/Non Profit |
| Country | United Kingdom |
| Start | 03/2020 |
| End | 03/2024 |
| Title | MARDY - Antifiungal Resistance Database |
| Description | Online database of anti fungal resistance alleles for multiple fungal pathogens |
| Type Of Material | Database/Collection of data |
| Year Produced | 2018 |
| Provided To Others? | Yes |
| Impact | Published in 2018 |
| URL | http://mardy.dide.ic.ac.uk |
| Title | TR-LAMP molecular diagnostic for Aspergillus fungus |
| Description | New CMOS-based lab-on-a-chip diagnostic for fungal antimicrobial resistance |
| Type | Diagnostic Tool - Non-Imaging |
| Current Stage Of Development | Initial development |
| Year Development Stage Completed | 2020 |
| Development Status | Actively seeking support |
| Impact | n/a |
| Description | Air pollution horizon-scanning: Seven potential risks of relevance to the UK |
| Form Of Engagement Activity | A formal working group, expert panel or dialogue |
| Part Of Official Scheme? | No |
| Geographic Reach | International |
| Primary Audience | Policymakers/politicians |
| Results and Impact | Horizon scanning is used to help identify potentially significant societal, economic or technological shifts which if they occurred would have major impacts on society. AQEG generally approaches the science and technology of air pollution either through retrospective analyses - what has happened to air quality and why, - or via future projections. These future projections are generally short to medium term and bounded by well-established science, but it is also AQEG's role to identify evidence gaps that include uncertainties. It is valuable to periodically look beyond established evidence, towards emerging science to identify potential perturbations and assess risks that might plausibly lead to unexpected and large future air quality changes, for example those arising from climatological, technological and behavioural shifts. The horizon-scanning was commissioned by the Chief Scientific Officer Angela McLean |
| Year(s) Of Engagement Activity | 2024 |
| URL | https://uk-air.defra.gov.uk/assets/documents/reports/cat05/2411071332_horizon_scan_AQEG_v5.pdf |
| Description | House of Commons science innovation and technology committee |
| Form Of Engagement Activity | A broadcast e.g. TV/radio/film/podcast (other than news/press) |
| Part Of Official Scheme? | No |
| Geographic Reach | International |
| Primary Audience | Policymakers/politicians |
| Results and Impact | Broadcast of interview with House of Commons Parliamentary Science, Innovation and Technology Committee on theme of 'Harnessing the Power of Fungi'. Six expert international witnesses were invited to Westminster and questioned on matters such as "Zombie apocalypse or environmental saviours?" with ourselves providing input on environmental issues including evolution of antifungal resistance in plant and animal pathogens |
| Year(s) Of Engagement Activity | 2024 |
| URL | https://parliamentlive.tv/event/index/91a56a91-27ee-4f7a-883a-443dd46f9bb2 |
| Description | New York Times front page interview |
| Form Of Engagement Activity | A press release, press conference or response to a media enquiry/interview |
| Part Of Official Scheme? | No |
| Geographic Reach | International |
| Primary Audience | Media (as a channel to the public) |
| Results and Impact | 'A Mysterious Infection, Spanning the Globe in a Climate of Secrecy' Widely syndicated 4-page NYT article featuring research by Fisher Lab |
| Year(s) Of Engagement Activity | 2019 |
| URL | https://www.nytimes.com/2019/04/06/health/drug-resistant-candida-auris.html?action=click&module=Rela... |
| Description | Public Lecture, Emerging Fungal Infections, Sydney |
| Form Of Engagement Activity | A talk or presentation |
| Part Of Official Scheme? | No |
| Geographic Reach | Regional |
| Primary Audience | Public/other audiences |
| Results and Impact | Public lecture, Fungal emerging disease, Sydney |
| Year(s) Of Engagement Activity | 2018 |
| Description | USA Environmental Protection Agency Finalizes Framework for Interagency Collaboration on Resistance Risks Associated with Antibacterial and Antifungal Pesticides |
| Form Of Engagement Activity | A formal working group, expert panel or dialogue |
| Part Of Official Scheme? | No |
| Geographic Reach | International |
| Primary Audience | Policymakers/politicians |
| Results and Impact | Our research on antifungal resistance and dual-use was highly influential in the EPA report - our group responded to the Request for Information Released on October 9, 2024 The U.S. Environmental Protection Agency (EPA) finalized its framework for expanding federal collaboration on the review of antibacterial and antifungal pesticides. To develop the framework, EPA coordinated with the U.S. Department of Health and Human Services (HHS) and the U.S. Department of Agriculture (USDA), under the oversight of the White House Office of Science and Technology Policy. The framework establishes a process for EPA to consider input from the other federal agencies when evaluating whether antibacterial or antifungal pesticides might result in the development or spread of resistance and reduce the effectiveness of some human and animal antibacterial and antifungal drugs. "This framework will strengthen the shared goals of EPA, HHS, USDA, and the White House in protecting relevant human and animal drugs while ensuring growers can continue to have access to important tools to protect their crops from fungal and bacterial diseases," said the Director of EPA's Office of Pesticide Programs Ed Messina. "The Biden-Harris Administration is committed to protecting public health and the environment. The rise of antimicrobial resistance poses a growing global health challenge," said Deputy Assistant to the President for the Cancer Moonshot and White House Office of Science and Technology Policy Deputy Director for Health Outcomes Danielle Carnival. "Integrating the best available human, plant, and environmental science in future decision making about how and what antibacterial and antifungal pesticides we use is an important step forward to improving health outcomes for all Americans." Through the framework, EPA aims to recognize the benefits of these pesticides to agriculture while minimizing their impact on public and animal health and considering a One Health approach. One Health is a multidisciplinary approach to improve health outcomes by analyzing linkages between humans, animals, and the global environment. |
| Year(s) Of Engagement Activity | 2024 |
| URL | https://www.epa.gov/pesticides/epa-finalizes-framework-interagency-collaboration-resistance-risks-as... |