CuBES - Copper Basin Exploration Science

Lead Research Organisation: University of Leicester
Department Name: Sch of Geog, Geol & the Environment

Abstract

Summary
The criticality of Cu, Co (+/- V) in battery technology and electricity transmission has established them as key components of the carbon-free energy transition. A major proportion of these elements are sourced from sedimentary basin-hosted deposits, formed from large-scale fluid flow systems. Recent work has shown that diverse basin architectures and processes were responsible for their genesis, yet we still do not understand why so few basins become highly endowed with metals. Given their paucity, the geological evolution of such basins demands the juxtaposition of unique conditions that: (1) generated large volumes of metal-bearing fluid; (2) provided sufficient sulfur; (3) created reducing trap sites; and (4) focused fluid flow into these sites [5]. Understanding large deposits is particularly significant because they are efficient to mine and offer the greatest societal benefits.
Our particular focus is to develop and integrate mineral and petroleum systems approaches to provide a disruptive innovation opportunity in the science and industrial applications in this field. Our objectives are to identify the processes, operating over a range of scales, that lead to the formation of large Cu-Co-(V) deposits and derive new and practical exploration tools. The opportunity is timely, given the current wave of academic interest in these ore systems, and the increased collaboration between industry and academia to develop sophisticated methods that can reduce exploration costs, risk and environmental impact.

To tackle these challenges, we have assembled a multi-institute academic consortium with internationally-recognised expertise across the geosciences. We have also built strategic research alliances with: (1) the UK's major mining houses, Rio Tinto and Anglo American, and with BHP and First Quantum Minerals, all with global interests in sediment-hosted copper mineralisation; (2) the energy sector (Scheupbach Energy); and (3) international academic partners (CSIRO, Univ. Houston, GFZ Potsdam, Universidad Nacional, Buenos Aires. The collaboration between PIs, PDRAs, affiliated PhD students funded outside the grant, industry and international partners will deliver high impact scientific publications, new data and tools to support the development of lower risk mineral exploration strategies, and highlight the UK as a world-leading community for research in basin-hosted mineral systems.

Planned Impact

Impact Summary
By improving our understanding of the fundamental aspects of sedimentary ore formation we will provide industry with new insights that will enable the development of refined exploration models grounded in physics and chemistry. This may be in our understanding of how alteration zones relate to hidden targets at the district scale, and/or at the broader scale where the knowledge of these processes may serve to develop new regional exploration models. More efficient regional targeting that accurately identifies favourable and unfavourable exploration tracts will result in socio economic benefits with a reduction in environmental impact and significant cost reductions and reduced risk. In the case of sediment-hosted base metal deposits, many basins are barren of significant mineralization, whereas a limited number contain huge resources. Understanding this dichotomy, will have a lasting impact on exploration models for these deposits.

Publications

10 25 50
 
Description Progress has been made establishing quantitatively the contribution of copper and cobalt from intrusive igneous rock to the metal budget of one of the world's greatest copper-cobalt deposits - the Central African Copperbelt. We have determined that these rocks are almost completely leached of their metals during fluid alteration and this leaching can provide a source for some (though not all) of the metals in the giant deposits.
Exploitation Route This finding can be applied to other copper basins across the world
Sectors Other

 
Description First Quantum Minerals 
Organisation First Quantum Minerals
Country Canada 
Sector Private 
PI Contribution Input of geological knowledge generated in the project
Collaborator Contribution Provision of datasets (drillcore photos, assays, samples)
Impact SEG conference presentation, September 2021
Start Year 2020
 
Description Research seminar at iCRAG 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Postgraduate students
Results and Impact Invited Research Seminar
Metal Sources in the Central African Copperbelt: Assessing the Mafic Contribution
David Holwell and Daryl Blanks
Year(s) Of Engagement Activity 2021
 
Description SEG 2022 Denver presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Industry/Business
Results and Impact Presentation to SEG conference with research in progress
Year(s) Of Engagement Activity 2022
 
Description SEG conference presentation 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Study participants or study members
Results and Impact Talk at SEG 100, online/hybrid at Whistler, Canada.
Metal sources in the Central Africa Copperbelt: assessing the mafic contribution
Daryl Blanks
Year(s) Of Engagement Activity 2021