Laser spectroscopic determination of new forms of nuclear matter in the trans-lead nuclei.

Lead Research Organisation: University of Manchester
Department Name: Physics and Astronomy

Abstract

In the subject of Nuclear Physics there exists several key open questions, these include the limits of nuclear existence, whether new forms of matter are present in loosely bound nuclei and how does the ordering of the quantum system change at these extremes. It is only possible to provide answers to these questions by directly studying exotic nuclei that are unstable with respect particle emission. The discovery of a diffuse halo structure in light nuclei such as 8He, 11Li and 14Be, is one example of nuclear structure that surprised the entire nuclear community. These incredibly systems, with just a few nucleons have a diffuse structure that is comparable in size to some of the heaviest nuclei known in nature such as 238U. With a new technique that offers a vast improvement in sensitivity, this fellowship has the unique opportunity to make measurements in a region of the nuclear chart previously described as 'terra incognito'. Such measurements offer the tantalizing possibility of discovering new structural phenomena and thereby begin to provide answers to the current open questions in Nuclear Physics. This fellowship will unambiguously measure specific nuclear observables, which can be extracted without invoking nuclear models, by studying the orbital atomic electron. Although often quoted as negligible there is a finite interaction between the nucleus and the atomic electrons, which is approximately a hundred million times smaller than the energy spacing of quantum levels within the atom. Such small effects are well within the scope of modern laser technology, which can perform measurements with an unprecedented resolution of one part in a thousand billion! This proposal will accurately measure the change in energy of the outer atomic electron in exotic radioactive isotopes and by doing so extract several key nuclear observables; the magnetic and electric moments, the angular momentum of the nuclear state and the change in the average charge radius of nucleus. These observables provide a wealth of information on the distribution of matter and how the quantum levels are ordered within the nucleus. This proposal will therefore be a significant part of the UK strategy in nuclear physics research providing for the first time, measurements on exotic nuclei where new forms of matter may exist.

Publications

10 25 50

publication icon
Cheal B (2010) Progress in laser spectroscopy at radioactive ion beam facilities in Journal of Physics G: Nuclear and Particle Physics

publication icon
Cocolios T (2012) Early onset of deformation in the neutron-deficient polonium isotopes in Journal of Physics: Conference Series

publication icon
Cocolios T (2016) High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE in Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms

publication icon
Cocolios T (2013) The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE in Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms

publication icon
Cocolios T (2010) Structure of 191 Pb from a- and ß-decay spectroscopy in Journal of Physics G: Nuclear and Particle Physics

 
Description We have developed a ultra sensitive laser spectroscopy technique that can pick a particular nuclear state and delivery it to an experimental location for study. To demonstrate the technique we studied the francium isotopes and were able to select one atom from more than 10 billion per second being produced at the source. When compared to state-of-the-art laser spectroscopy techniques used in Canada the new methodology is more than 100 times more sensitive.
Exploitation Route The technique is directly applicable for nuclear structure research and will allow nuclear isomers to be selected and delivered to experiments (not previously possible before). The technique is also directly applicable to trace analysis and rare isotope studies (for example in medicine, nuclear security and industry)
Sectors Environment,Pharmaceuticals and Medical Biotechnology,Security and Diplomacy

URL http://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.011055
 
Description Collinear Carbon Dating
Amount £87,889 (GBP)
Funding ID ST/R001812/1 
Organisation Science and Technologies Facilities Council (STFC) 
Sector Public
Country United Kingdom
Start 11/2017 
End 10/2018
 
Description ERC Consolidator Grant
Amount € 1,846,542 (EUR)
Funding ID 648381 
Organisation European Research Council (ERC) 
Sector Public
Country Belgium
Start 04/2015 
End 03/2020
 
Description ERC Proof of Concept
Amount € 150,000 (EUR)
Funding ID 768258 
Organisation European Research Council (ERC) 
Sector Public
Country Belgium
Start 10/2017 
End 09/2018
 
Description CRIS Collaboration 
Organisation University of Leuven
Department Institute for Nuclear and Radiation Physics
Country Belgium 
Sector Academic/University 
PI Contribution We have designed and constructed the beam line and laser laboratory. We developed new techniques and designed equipment upgrades. We have provided staff and equipment.
Collaborator Contribution They have provided funding for equipment and manpower.
Impact See publication list.
Start Year 2010
 
Company Name Artemis Analytical 
Description This is a company setup with UMIP to begin the process of taking our research at CERN to market. The company's focus is providing an analysis service for carbon dating of modern and ancient samples. The key methodology is based on techniques developed during the fellowship that have been subsequently further enhanced at the University of Manchester to make them competitive within this sector. 
Year Established 2016 
Impact The company has yet to start trading. At the moment we have filed two patents to protect inventions that built on research at CERN during the fellowship. The company is in the process of securing its IP position, conducting market research and structural planning and seeking equity investment. It is hoped to start trading in 2018.