Advances in Machine Learning
Lead Research Organisation:
UNIVERSITY COLLEGE LONDON
Department Name: Computer Science
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Organisations
People |
ORCID iD |
David Barber (Primary Supervisor) | |
Raza Habib (Student) |
Studentship Projects
Project Reference | Relationship | Related To | Start | End | Student Name |
---|---|---|---|---|---|
EP/N509577/1 | 30/09/2016 | 24/03/2022 | |||
1782562 | Studentship | EP/N509577/1 | 30/09/2016 | 12/01/2021 | Raza Habib |
Description | We have a developed a new algorithm for performing more efficient Markov Chain Monte Carlo. We combine recent advances in deep artificial neural networks with traditional probabilistic machine learning and our algorithm will likely have benefit in both AI and scientific applications. Machine learning deals with the challenge of drawing conclusions and inferences from data. A large variety of algorithms in this domain come under the umbrella of Bayesian machine learning, where the goal is to assign probabilities to possible future predictions given a model and some data. Unfortunately, for most interesting and complex models exact computation is intractable and approximations are needed. The quality of the approximate answer depends on the efficiency of the algorithm used and we have introduced a novel framework for construction these algorithms more efficiently called Auxiliary Variational Markov Chain Monte Carlo. In addition to the novel MCMC algorithm we have also built a system combining probabilistic learning with speech synthesis allowing us to create a state of the art speech synthesiser that is able to control the emotional expression of synthesised speech. |
Exploitation Route | The MCMC algorithm is already being used by physicists at the university of Warwick and has opened a new research avenue for producing better MCMC algorithms. The speech synthesis algorithm is being used by google and has been cited in follow up papers. |
Sectors | Aerospace Defence and Marine Creative Economy Digital/Communication/Information Technologies (including Software) Education Government Democracy and Justice Culture Heritage Museums and Collections |
URL | https://github.com/AVMCMC/AuxiliaryVariationalMCMChttps://tts-demos.github.io/ |
Title | Auxiliary Variational Sampler |
Description | We have open sourced software to draw samples from posterior distributions that arise in bayesian statistical analysis. The software should aid researchers in statistical methods to develop new algorithms and statisticians to perform data analysis. |
Type Of Technology | Software |
Year Produced | 2019 |
Open Source License? | Yes |
Impact | Other researches have used the software in their analysis and are building on new developments. |
URL | https://github.com/AVMCMC/AuxiliaryVariationalMCMC |