Going carbon negative - Can bioenergy with carbon capture and storage be part of the solution? Developing a framework to assess the impacts of UK and

Lead Research Organisation: University of Southampton
Department Name: Centre for Biological Sciences

Abstract

Several Energy and Climate Change future scenarios identify 'Bioenergy with Carbon Capture and Storage'- (BECCS) as a significant enabler of the move towards a low carbon economy. This reflects the ability of these two technologies in combination, to effectively remove large amounts of CO2 from the atmosphere whilst at the same time, providing heat, power and liquid biofuels, leading to the concept of 'carbon negative energy' (IPCC, 2013). National UK assessments such as CCC (CCC, 2011) and the Energy White paper (DECC, 2011) and indeed, within the global IPCC assessment (IPCC, 2013), identify BECCS as having a central role in decarbonisation strategies. Although this is an attractive option, there remain significant technical barriers to deployment and to date, no consideration has been made of the impacts of wide-scale deployment on natural capital and ecosystem services. At the same time, the UK Natural Capital Committee (NEA, 2014) is recommending that Government endorses a long-term plan to maintain and improve natural capital and that natural capital should be incorporated into generational planning of UK infrastructure. Carbon stocks (soils), wildlife (biodiversity) and water resources have been identified as natural capital that is significantly threatened at present and that without careful consideration in future, may lead to the loss of considerable benefits that flow from this natural capital, including food, energy and climate regulation. It has also been recognised that these assets have a significant spatial dimension in the UK (Bateman et al., 2013) and elsewhere and this spatiality must be considered in any future policy developments, including consumption-based metrics that reflect the full impact of our global footprint, here in the delivery of a low carbon economy for the UK. The aim of this PhD is to bring together thinking from the energy and natural capital evaluation approaches, using the considerable number of tools emerging from NEA and elsewhere (including ADVENT and UKERC Pathways Theme) and to develop a framework to understand the likely implications of BECCS for the UK and more widely.

Planned Impact

In addition to the academic community, we envisage three groups of key beneficiaries from the research: (i) government departments and public policy makers; (ii) private sector companies in the energy, water and agriculture sectors; and (iii) the public and society more generally. Our communication, engagement and dissemination plans are described in the Pathways to Impact document. Here we outline the expected impacts of these combined activities.

National Decision-Makers:

A fundamental objective of this project is to quantify and value the natural capital and ecosystem services impacts of different energy pathways. Moreover, based on that knowledge, the project will develop decision-support tools that provide a whole-system assessment of different energy futures. Accordingly, the project's outputs will have direct importance to numerous decision-making agencies including the Department of Energy and Climate Change (DECC), the Department of Environment Food and Rural Affairs (Defra) and the Committee on Climate Change (CCC). Each of those agencies has immediate needs for tools that will allow them to assess and compare different possible energy pathways across both the energy and environment spheres. The project will also provide inputs for agencies involved in national policy making regarding natural capital, particularly the on-going development of natural capital accounts being pursued by the National Capital Committee (NCC), Office of National Statistics (ONS) and HM Treasury (HMT). The research team have long track-records of collaboration with each of these organisations ensuring the project's findings will have a pathway for direct dissemination to the relevant decision-making bodies.

Regional Decision-Makers:

In addition, the project will undertake a number of case studies whose regional focus will provide valuable input to local decision-makers. For instance, research on public attitudes to potential marine energy developments in the Bristol Channel-Severn Estuary (WP5.6) will be of interest to Local Enterprise Partnerships given the economic importance of tourism in the region. Similarly, the work on implications of changes in energy consumption in north-eastern Scotland will be of relevance to unitary authorities within the region with respect to strategic planning and decisions regarding future infrastructure investments.

Private Sector:

Outputs of the project will also be of direct relevance to a number of businesses and organisations in the private sector. The strategic planning of energy companies will be particularly enhanced by better understanding of potential environmental impacts from their operations and how natural capital considerations might constrain these in the future. Similarly, the water supply industry has an obvious interest in the implications of future energy pathways for water resources and how these could influence future investments in abstraction, treatment and distribution infrastructure. The agricultural sector also stand to benefit from project's outputs. In particular, the project will provide insights into possible future demands for bioenergy and spatial variations in the availability of water for irrigation purposes. In addition, the project will provide information directly relevant to businesses in the energy, water and food sectors with interests in developing corporate natural capital accounts.

Public and Wider Society:

The final group to be impacted by the project will be society more generally. The project's outputs will help ensure that the public's valuation of important natural assets such as green spaces used for recreation and landscapes enjoyed for their visual amenity are meaningfully represented in decisions concerning future energy pathways. These insights will also be relevant to the work of many environmental NGOs such as the Royal Society for the Protection of Birds and county wildlife trusts.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
NE/M019764/1 30/06/2015 30/06/2021
1790094 Studentship NE/M019764/1 01/10/2016 30/09/2020 Caspar Donnison
 
Description A novel research method has been developed which assesses the environmental and social trade-offs and co-benefits of growing bioenergy crops. We also find from this research that the location and scale of bioenergy crops grown are both relevant to these social and environmental impacts. This has added further impetus to answering the question of what the sustainable level of bioenergy that can be supported, both nationally and globally. The location of this technology is also likely to be highly relevant to the social legitimacy, or social acceptability, of the technology. This latter finding was the result of a new collaboration with several sociologists.
Exploitation Route Manuscripts will be developed for publication to cover the academic pathway to use of this research. To reach the non-academic pathway to use of this research I will coordinate with the research consortium of which I am a part to reach and coordinate with industry and policymaker stakeholders.
Sectors Energy,Environment,Government, Democracy and Justice

URL https://onlinelibrary.wiley.com/doi/full/10.1111/gcbb.12695
 
Description Following the publication of a paper in 2020 on the potential deployment of BECCS technology in the UK, this research has been disseminated to industry and policymaker stakeholders. It also formed the basis of evidence given to the Committee on Climate Change to the UK.
First Year Of Impact 2020
Sector Energy,Government, Democracy and Justice
Impact Types Policy & public services