Cleaning of Exhaust Streams From Small Generators

Lead Research Organisation: University of Sheffield
Department Name: Chemical & Biological Engineering

Abstract

Energy systems globally are shifting towards a low-carbon future, and will require quick-response power generators to combat the intermittency issues of renewables. Gas Turbines are capable of providing security of supply and system flexibility, they are currently used by the Short Term Operating Reserve (STOR) as a balancing service in the UK. Open-Cycle Gas Turbines (OCGT) have the ability to generate electricity at full power in under 20 minutes, however, emissions control technologies for gas turbines primarily focus on large scale combined-cycle configurations. This project is model-based techno-economic analysis (TEA) to compare and highlight the most applicable exhaust gas cleaning technologies. Focussing on commercially available CO2 capture technologies and scaling them to work alongside OCGTs. As the generation source is used as a 'peaking' plant, they have a low-capacity factor. Therefore, the effects of load variation, ramping rates, and changes in exhaust gas composition are also being computationally investigated.

Planned Impact

The strategic vision is to develop a world-leading Centre for Industrial Doctoral Training focussed on delivering research leaders and next generation innovators with broad economic, societal and contextual awareness, having strong technical skills and the capability of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles.
The immediate beneficiaries of our activities will be the students we train and their sponsoring companies. These students are expected to progress to research/development careers in industry or academia and be future leaders. They will be able to contribute to stimulating UK-based industry into developing the next generation of technologies to reduce CO2 emissions from burning fossil fuels and ultimately improve the UK's position in the global economy through increased jobs and exports.

Other beneficiaries include the industrial and academic partners of the CDT, the broader scientific and industrial carbon capture and storage and cleaner fossil energy communities, skills base and society in general. The key application areas addressed by the CDT will impact on the major technical challenges in the sector over the next 10-20 years as identified by our industrial partners:
(i) Implementing new, more flexible and efficient fossil fuel power plant to meet peak demand as recognised by electricity market reform incentives in the Energy Bill.
(ii) Deployment of CCS at commercial scale for near zero emission power plant and development of cost reduction technologies
(iii) Maximising the potential of unconventional gas, including shale gas and underground coal gasification.
(iv) Development of technologies for vastly reduced CO2 emissions in other industrial sectors: iron and steel making, cement, refineries, domestic fuels and small scale diesel power generators.
These areas also cover biomass firing in conventional plant defined in the Bioenergy Priority Area where specific issues concern erosion, corrosion, slagging, fouling and the overall supply chain economics.

Technically, the students we train will graduate with specialised knowledge in CCS and cleaner fossil energy. This will be underpinned by a broad technical knowledge of the sector and a wider appreciation of the role carbon capture and storage and cleaner fossil energy can play in the UK and internationally. We will also support development of their professional skills including developing their creative thinking skills providing them with a solid foundation to rapidly progress to become the future leaders of innovation and growth in UK industry and academia.

In the short-term, the trained reseachers will apply their knowledge and skills to underpin applications-led activities at the partnering industrial organisations and participate in further academic-industry collaborations. In the longer term, they will progress to lead in the integration of dramatically enhanced carbon capture and storage and cleaner fossil energy technologies that will be of direct benefit across the UK fossil fuel industry and supply chain, leading directly to wealth creation with job protection and growth.
A company sponsoring a student will help define the research they undertake and will be of direct interest to the company. Further, the company will have had long term access to a potential employee. Timely application of the technologies developed will enable and accelerate the development and adoption of CCS and cleaner fossil energy knowledge bringing environmental benefits to the UK and internationally.

The publicity generated by the project will raise public awareness of the role of CCS and cleaner fossil energy igenerally in society. Ultimately the broader benefits to society will include improvements to the quality of life derived from the improved efficiency, flexibility and reliability of the technologies.

Publications

10 25 50