Novel Bi-functional Materials from Earth-Abundant Plasmonic Structures for Light-driven Applications

Lead Research Organisation: University of Cambridge
Department Name: Materials Science & Metallurgy

Abstract

The ultimate goal of any sustainable strategy is to replace fossil fuels by efficient harvesting and storage of renewable (e.g. solar) energy. Recent developments in the field of nanoscale optoelectectronics suggest that this dream might be possible: light-responsive materials can absorb sunlight and convert it into other energy forms (chemical, thermal, etc.) thanks to the exploitation of the plasmonic resonance phenomena. The realization of this technology is, however, currently challenged by fundamental material properties. Common light-enhancing, plasmonic metals Ag and Au are expensive and uncompetitive catalysts; most traditional catalysts (Pd, Pt, oxides) cannot sustain strong LSPRs; consequently, neither attract and concentrate light's energy. This project presents a multi-pronged approach to achieve sustainable bi-functional nanoparticles. It represents an important move away from expensive and rare plasmonic materials to Earth-abundant Mg, capable of absorbing visible (solar)light. This project uses innovative reaction engineering principles for the integration of plasmonic cores and catalytic sites that enable clean, surfactant-free surfaces as well as multi-step air-free syntheses. This unique combination promises intimate solid/solid interactions, impossible to achieve with current synthetic methods, that will be fully characterized for both their fundamental light-matter interaction behaviour as well as their catalytic properties.

Planned Impact

Our main impacts will be:
- a new generation of interdisciplinary nano researchers with expertise across science and innovation
- development of new nanotechnologies, and their translation into companies
- strategic developments in four key areas: Energy Materials, Sustainable NanoMaterials, Nano-Bio Technologies, and NanoElectronics/Photonics
- a paradigm change of collaborative outlook
- a strong interaction with stakeholders including outreach for the public, and a platform of industrial partners
- improved use of interdisciplinary working tools including management, discipline bridging and IT

Economic impact of the new CDT is focused through our industrial engagement programme, as well as our innovation training. Our partner companies include Nokia, Unilever, Dyson, BP, Hitachi, IBM, Microsoft, Sharp, Toshiba, Sumitomo, Nanoco, Renishaw, Aixtron, Thales, De La Rue, TWI, and local nano-SMEs including Cambridge Display Technology, Plastic Logic, Eight19, Base4, Sphere Fluidics, Mesophotonics, Cavendish Kinetics, Owlstone, and CCMOS. Such partnerships are crucial for the UK to revive high value manufacturing as the key pillar to lead for future technologies. To develop this strategy we link to the Manufacturing Catapult centre (CPI) and the new Cambridge Centre for Manufacturing in Large-Area Electronics.

Training impact emerges through not just the vast array of Nano techniques and ideas that our cohorts and associated students are exposed to, but also the interdisciplinary experience that accrues to all the academics. In particular the younger researchers coming into the University are plugged into a thriving programme that connects their work to many other sciences, applications, and societal challenges. Interactions with external partners, including companies, are also strong and our intern programme will greatly strengthen training outcomes.

Academic impact is fostered by ensuring strong coherent plans for research in the early years, and also the strong focus of the whole CDT on nanoassembly of functional nanomaterials and nanodevices. Our themed areas provide a strong goal-based rationale for the research directions, and also ensure high impact research will emerge. Our track record is already strong (even though our first students have not yet finished), including 1 Nature Chem., 1 Nature Mat., 4 ACS Nano, 2 Adv.Mat., 2 Ang.Chem., 5 Appl.Phys.Letts., 1 Chem.Comm., 2 JACS, 2 Nano Lett., as well as others, plus 5 patents in process. Our cohorts have given 32 talks at international conferences, and many posters. As well as our new patents, the CDT students have already directly spun-off one company (CamIn) and several more are being discussed.

Societal impacts arise from both the progression of our cohorts into their careers as well as their interaction with the media, public, and sponsors. We have a strong careers programme and industrial + academic breadth ensure researchers are well aware of their options, and constantly discussing with their peers. Our efforts to bring societal challenges to students' awareness frames their view of what a successful career looks like. We directly encouraged a wide variety of engagement, including interaction with >5000 members of the public each year (mostly pre-university) through Nano exhibits during public events such as the Cambridge Science Festival. We also run several public policy workshops, and will further develop this aspect through the Cambridge Centre for Science Policy. Longer term societal impact comes directly from our engagement with partner companies creating jobs and know-how within the UK.

Publications

10 25 50
 
Description Many metals and alloys, including Fe and W, adopt body-centred cubic (BCC) crystal structures and nanoparticles of these metals are gaining significant scientific and industrial relevance. Twinning has a marked effect on catalytic activity, yet there is little evidence for or against the presence of twinning in BCC nanoparticles. We explored the potential shapes of twinned BCC nanoparticles, and predicted their electron microscopy and diffraction signatures. BCC single crystal and twinned shapes often appear similar and diffraction patterns along common, low-index zone axes are often indistinguishable, casting doubt on many claims of single crystallinity. We outlined how nanoparticles can be characterized to conclusively prove the presence or absence of twinning.

Nanostructures of some metals can sustain light-driven electron oscillations called localized surface plasmon resonances, or LSPRs, that give rise to absorption, scattering, and local electric field enhancement. Their resonant frequency is dictated by the nanoparticle (NP) shape and size, fuelling much research geared toward discovery and control of new structures. LSPR properties also depend on composition; traditional, rare, and expensive noble metals (Ag, Au) are increasingly eclipsed by earth-abundant alternatives, with Mg being an exciting candidate capable of sustaining resonances across the ultraviolet, visible, and near-infrared spectral ranges. We reported numerical predictions and experimental verifications of a set of shapes based on Mg NPs displaying various twinning patterns including (101¯1), (101¯2), (101¯3), and (112¯1), that create tent-, chair-, taco-, and kite-shaped NPs, respectively. These are strikingly different from what is obtained for typical plasmonic metals because Mg crystallizes in a hexagonal close packed structure, as opposed to the cubic Al, Cu, Ag, and Au. A numerical survey of the optical response of the various structures, as well as the effect of size and aspect ratio, reveals their rich array of resonances, which are supported by single-particle optical scattering experiments. Further, corresponding numerical and experimental studies of the near-field plasmon distribution via scanning transmission electron microscopy electron-energy loss spectroscopy unravels a mode nature and distribution that are unlike those of either hexagonal plates or cylindrical rods. These NPs, made from earth-abundant Mg, provide interesting ways to control light at the nanoscale across the ultraviolet, visible, and near-infrared spectral ranges.
Exploitation Route We outlined how body-centred-cubic (BCC) nanoparticles can be characterized to conclusively prove the presence or absence of twinning. Currently, twinned BCC nanoparticles have not been reported in the literature.

Magnesium nanoparticles form a variety of shapes which can be used to focus light. This property has many applications, and our group will be investigating the catalytic properties of these nanoparticles when they focus light onto catalytic sites.
Sectors Energy