Developing hardware and software for real-time molecular simulation of binding free energies in virtual reality

Lead Research Organisation: University of Bristol
Department Name: Chemistry

Abstract

Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

Planned Impact

Modelling and simulation are playing an increasingly central role in all branches of science, both in Universities and in
industry, partly as a result of increasing computer power and partly through theoretical developments that provide more reliable models. Applications range from modelling chemical reactivity to simulation of hard, glassy, soft and biological materials; and modelling makes a decisive contribution to industry in areas such as drug design and delivery, modelling of reactivity and catalysis, and design of materials for opto-electronics and energy storage.

The UK (and all other leading economies) have recognised the need to invest heavily in High-Performance Computing to maintain economic competitiveness. We will deliver impact by training a generation of students equipped to develop new theoretical models; to provide software ready to leverage advantage from emerging computer architectures; and to pioneer the deployment of theory and modelling to new application domains in the chemical and allied sciences.

Our primary mechanisms for maximizing impact are:

(i) Through continual engagement, from the beginning, with industrial partners and academic colleagues to ensure clarity about their real training needs.
(ii) By ensuring that theory, as well as software and application, forms an integral part of training for all of our students: this is prioritised because the highest quality theoretical research in this area has led to game-changing impacts.
(iii) Through careful construction of a training model that emphasizes the importance of providing robust and sustainable software solutions for long-term application of modelling and simulation to real-world problems.
(iv) By an extensive programme of outreach activities, designed to ensure that the wider UK community derives direct and substantial benefit from our CDT, and that the mechanisms are in place to share best practice.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
NE/W503174/1 31/03/2021 30/03/2022
2250183 Studentship NE/W503174/1 30/09/2018 31/12/2022 Rhoslyn Roebuck-Williams