Hybrid Optical-Digital Coherence Tomography

Lead Research Organisation: University of Dundee
Department Name: Physics

Abstract

Imaging of the retina at the back of the human eye is essential for a timely diagnosis of diseases such as macular degeneration. Of growing importance here is optical coherence tomography (OCT), a technique that enables three-dimensional depth 'sections' of the retina. However, aberrations blur the peripheral of the field-of-view; precluding the detection of some diseases in an early stage. This project aims to overcome this limitation. The aim of this project is to develop a hybrid optical-digital imaging technique that is tolerant to the inherent optical imperfections in the eye and imaging optics. The first objective of this project is to overcome the aberrations introduced by the anterior segment of the human eye. A hybrid, optical-digital, approach will be investigated, specifically for wide-field imaging. The second objective is to develop the first Hybrid Optical-Digital OCT system, exploiting the depth information to obtain sharper lateral resolution. The main challenge in this project is deriving the optimal phase-modulation for the hybrid imaging system. This will require accurate modelling of complex optical-digital system and a detailed analysis of different options. A secondary challenge is to strike the optimal balance between light-efficiency and diffusion-suppression in the hybrid OCT system. Finally, with an eye on commercialisation, a method must be developed to compute spatially-variant deconvolutions in real time. The development of this first hybrid optical-digital OCT device will enable high resolution over the entire field-of-view. Its development will also lead to an improved knowledge of birefringence in the retina and other optical properties of the human eye. The outcomes of this project directly translate to opportunities for commercialisation by Optos Plc.

Planned Impact

Complementing our Pathways to Impact document, here we state the expected real-world impact, which is of course the leading priority for our industrial partners. Their confidence that the proposed CDT will deliver valuable scientific, engineering and commercial impact is emphasized by their overwhelming financial support (£4.38M from industry in the form of cash contributions, and further in-kind support of £5.56M).

Here we summarize what will be the impacts expected from the proposed CDT.

(1) Impact on People
(a) Students
The CDT will have its major impact on the students themselves, by providing them with new understanding, skills and abilities (technical, business, professional), and by enhancing their employability.
(b) The UK public
The engagement planned in the CDT will educate and inform the general public about the high quality science and engineering being pursued by researchers in the CDT, and will also contribute to raising the profile of this mode of doctoral training -- particularly important since the public have limited awareness of the mechanisms through which research scientists are trained.

(2) Impact on Knowledge
New scientific knowledge and engineering know-how will be generated by the CDT. Theses, conference / journal papers and patents will be published to disseminate this knowledge.

(3) Impact on UK industry and economy
UK companies will gain a competitive advantage by using know-how and new techniques generated by CDT researchers.
Companies will also gain from improved recruitment and retention of high quality staff.
Longer term economic impacts will be felt as increased turnover and profitability for companies, and perhaps other impacts such as the generation / segmentation of new markets, and companies receiving inward investment for new products.

(4) Impact on Society
Photonic imaging, sensing and related devices and analytical techniques underpin many of products and services that UK industry markets either to consumers or to other businesses. Reskilling of the workforce with an emphasis on promoting technical leadership is central to EPSRC's Productive Nation prosperity outcome, and our CDT will achieve exactly this through its development of future industrially engaged scientists, engineers and innovators. The impact that these individuals will have on society will be manifested through their contribution to the creation of new products and services that improve the quality of life in sectors like transport, dependable energy networks, security and communications.

Greater internationalisation of the cohort of CDT researchers is expected from some of the CDT activities (e.g. international summer schools), with the potential impact of greater collaboration in the future between the next generations of UK and international researchers.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S022821/1 01/10/2019 31/03/2028
2262650 Studentship EP/S022821/1 01/09/2019 30/08/2023 Stuart Clark