Enzyme-3D Printing and Controlled Drug Delivery and Release

Lead Research Organisation: University College London
Department Name: School of Pharmacy

Abstract

3D-Printing is an emergent technology with considerable potential for drug delivery applications, in particular for customized therapies. One of the main contributors to its success is its ability to enable highly adaptable designs and allow the manufacture of systems with a complexity which would not be possible to achieve with conventional manufacturing techniques. This project seeks to modify the exciting potential of these devices by incorporating enzymes into their structures (such as hydrolytic enzymes) and exploring their efficacy at catalysing reactions for the slow release of therapeutics embedded into the polymer structures.
Biocompatable enzyme-released therapeutics firstly have applications for the selective delivery of drugs, particularly sustained delivery over extended periods of time, and pro-drug concepts can be incorporated. To target diseases such as cancer, non-surgically resectable tumours could be a specific target of this project. Secondly, this approach can be used in the design of implants to modify degradation profiles.
Bioderived sustainable PLA-based slow release polymers will be used, and several designs considered throughout the project such as layering of the components which can readily be achieved using 3D-printing for the targeted personalised therapeutic delivery of drugs.

Planned Impact

Pharmaceutical technologies underpin healthcare product development. Medicinal products are becoming increasingly complex, and while the next generation of research scientists in the life- and pharmaceutical sciences will require high competency in at least one scientific discipline, they will also need to be trained differently than the current generation. Future research leaders need to be equipped with the skills required to lead innovation and change, and to work in, and connect concepts across diverse scientific disciplines and environments. This CDT will train PhD scientists in cross-disciplinary areas central to the pharmaceutical, healthcare and life sciences sectors, whilst generating impactful research in these fields. The CDT outputs will benefit the pharmaceutical and healthcare sectors and will underpin EPSRC call priorities in the development of low molecular weight molecules and biologics into high value products.

Benefits of cohort research training: The CDT's most direct beneficiaries will be the graduates themselves. They will develop cross-disciplinary scientific knowledge and expertise, and receive comprehensive soft skills training. This will render them highly employable in R&D in the pharmaceutical, healthcare and wider life-sciences sectors, as is evidenced by the employment record in R&D intensive jobs of graduates from our predecessor CDTs. Our students will graduate into a supportive network of alumni, academic, and industrial scientists, aiding them to advance their professional careers.

Benefits to industry: The pharmaceutical sector is a key part of the UK economy, and for its future success and international competitiveness a skilled workforce is needed. In particular, it urgently needs scientists trained to develop medicines from emerging classes of advanced active molecules, which have formulation requirements that are very different from current drugs. The CDT will make a considerable impact by delivering a highly educated and skilled cohort of PhD graduates. Our industrial partners include big pharma, SMEs, CROs, CMOs, CMDOs and start-up incubators, ensuring that CDT training is informed by, and our students exposed to research drivers in, a wide cross-section of industry. Research projects in the CDT will be designed through a collaborative industry-academia innovation process, bringing direct benefits to the companies involved, and will help to accelerate adoption of new science and approaches in the medicines development. Benefit to industry will also be though potential generation of IP-protected inventions in e.g. formulation materials and/or excipients with specific functionalities, new classes of drug carriers/formulations or new in vitro disease models. Both universities have proven track records in IP generation and exploitation. Given the value added by the pharma industry to the UK economy ('development and manufacture of pharmaceuticals', contributes £15.7bn in GVA to the UK economy, and supports ~312,000 jobs), the economic impacts of high-level PhD training in this area are manifest.

Benefits to society: The CDT's research into the development of new medical products will, in the longer term, deliver potent new therapies for patients globally. In particular, the ability to translate new active molecules into medicines will realise their potential to transform patient treatments for a wide spectrum of diseases including those that are increasing in prevalence in our ageing population, such as cardiovascular (e.g. hypertension), oncology (e.g. blood cancers), and central nervous system (e.g. Alzheimer's) disorders. These new medicines will also have major economic benefits to the UK. The CDT will furthermore proactively undertake public engagement activities, and will also work with patient groups both to expose the public to our work and to foster excitement in those studying science at school and inspire the next generation of research scientists.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S023054/1 01/10/2019 31/03/2028
2594485 Studentship EP/S023054/1 27/09/2021 26/09/2025 Amy Locks