Applications of Reconfigurable Windings for Traction Motors and Drives

Lead Research Organisation: University of Bath
Department Name: Mechanical Engineering

Abstract

The objective is to design a stator winding reconfiguration system which is commercially and technically attractive. The concept of reconfiguring the stator windings depending on the motor operating point is widely known to offer performance advantages in terms of motor efficiency and torque density for a given mass of rare earth magnets. From work carried out in the summer project it is also shown that there is potential to reduce the specification of power electronics. Reconfiguration of windings between star and delta modes of operation is a common practice in industrial applications for start-up of induction machines, however commercial implementation of such systems for traction applications is almost non-existent owing to cost and packaging constraints. The objective of this research is to develop and demonstrate such a system which could be commercially relevant in automotive traction motor applications, and to evaluate its efficacy.
The concept which will be developed within this project is based around a mechanical switching mechanism, as we believe this offers the only realistic route to achieve the cost requirement and make this technology commercially relevant for mainstream automotive applications. Previous work details semiconductor-based switching systems but are difficult to realise for under 200 euro for the power electronics alone, not considering control circuitry or cooling. In contrast, the mechanical switching solution uses abundantly available materials and inexpensive manufacturing techniques and so has excellent potential for cost optimisation.
To realise the full benefits of this concept, it is desired to be integrated into the motor packaging. This will ensure that the total package is optimised for volume and mass and is preferable to integration within the inverter because it avoids the need for 12 cables connecting the motor and inverter. Despite multiple patents in this area no commercial product has yet reached the market, highlighting the difficulty of achieving a practical solution. We believe one of the key factors in producing a practical design is reducing the number of switches, or more precisely the number of electrical contact faces, since these are ultimately what limits the package volume. A key area in which the proposed solution progresses the state-of-the-art is in reducing the number of electrical contact faces by making maximum use of double-throw switches. A full review of possible switching mechanisms will be conducted as part of the work, including electrical schematics and actuation mechanisms, with a view to minimising cost and volume. This work will ultimately analyse such systems with the aim of establishing a design methodology which can be applied to the general case, to analytically trade off volume with performance, ensuring the project outputs are widely applicable.

Planned Impact

Impact Summary

This proposal has been developed from the ground up to guarantee the highest level of impact. The two principal routes towards impact are via the graduates that we train and by the embedding of the research that is undertaken into commercial activity. The impact will have a significant commercial value through addressing skills requirements and providing technical solutions for the automotive industry - a key sector for the UK economy.

The graduates that emerge from our CDT (at least 84 people) will be transformative in two distinct ways. The first is a technical route and the second is cultural.

In a technical role, their deep subject matter expertise across all of the key topics needed as the industry transitions to a more sustainable future. This expertise is made much more accessible and applicable by their broad understanding of the engineering and commercial context in which they work. They will have all of the right competencies to ensure that they can achieve a very significant contribution to technologies and processes within the sector from the start of their careers, an impact that will grow over time. Importantly, this CDT is producing graduates in a highly skilled sector of the economy, leading to jobs that are £50,000 more productive per employee than average (i.e. more GVA). These graduates are in demand, as there are a lack of highly skilled engineers to undertake specialist automotive propulsion research and fill the estimated 5,000 job vacancies in the UK due to these skills shortages. Ultimately, the CDT will create a highly specialised and productive talent pipeline for the UK economy.

The route to impact through cultural change is perhaps of even more significance in the long term. Our cohort will be highly diverse, an outcome driven by our wide catchment in terms of academic background, giving them a 'diversity edge'. The cultural change that is enabled by this powerful cohort will have a profound impact, facilitating a move away from 'business as usual'.

The research outputs of the CDT will have impact in two important fields - the products produced and processes used within the indsutry. The academic team leading and operating this CDT have a long track record of generating impact through the application of their research outputs to industrially relevant problems. This understanding is embodied in the design of our CDT and has already begun in the definition of the training programmes and research themes that will meet the future needs of our industry and international partners. Exchange of people is the surest way to achieve lasting and deep exchange of expertise and ideas. The students will undertake placements at the collaborating companies and will lead to employment of the graduates in partner companies.

The CDT is an integral part of the IAAPS initiative. The IAAPS Business Case highlights the need to develop and train suitably skilled and qualified engineers in order to achieve, over the first five years of IAAPS' operations, an additional £70 million research and innovation expenditure, creating an additional turnover of £800 million for the automotive sector, £221 million in GVA and 1,900 new highly productive jobs.

The CDT is designed to deliver transformational impact for our industrial partners and the automotive sector in general. The impact is wider than this, since the products and services that our partners produce have a fundamental part to play in the way we organise our lives in a modern society. The impact on the developing world is even more profound. The rush to mobility across the developing world, the increasing spending power of a growing global middle class, the move to more urban living and the increasingly urgent threat of climate change combine to make the impact of the work we do directly relevant to more people than ever before. This CDT can help change the world by effecting the change that needs to happen in our industry.

People

ORCID iD

Joshua BEST (Student)

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S023364/1 01/04/2019 30/09/2027
2602665 Studentship EP/S023364/1 01/10/2021 30/09/2025 Joshua BEST