Hydrogen Transport and Trapping Mechanisms Controlling Embrittlement of Nickel Alloys in Low Carbon Energy Systems

Lead Research Organisation: University of Manchester
Department Name: Engineering and Physical Sciences

Abstract

Many current and next generation energy systems are reliant on the production, transportation, storage and use of gaseous hydrogen, often at high pressure. The safety, durability, performance, and economic operation of such systems are challenged due to the reality that hydrogen promotes a variety of degradation modes in otherwise high performance materials. Such degradation is often manifested as cracking which compromises the structural integrity of metals and polymers; a behaviour complicated by time and operating cycle (e.g., stress, hydrogen pressure, and temperature) dependencies of degradation. As an example, concurrent stressing and hydrogen exposure at typical pressure vessel or pipeline environmental conditions can promote cracking in modern metallic systems at one-tenth the fracture toughness. Such hydrogen-induced degradation phenomena are generally categorised as hydrogen embrittlement. The breadth and importance of hydrogen damage phenomena have not gone unnoticed in the scientific community with an immense amount of work conducted over the past 100 years. The problem is broadly interdisciplinary and such work has involved metallurgy, chemistry, solid mechanics and fracture mechanics, surface science, molecular and atomic hydrogen physics, non-destructive inspection, materials characterisation, and mechanical-properties testing. This important work notwithstanding, major challenges face those tasked with managing complex engineering structures exposed to demanding environment and mechanical loading conditions. The challenge here is to transform debate on mechanisms of hydrogen damage into a focus on quantitative, predictive models of material cracking properties. Overarching these challenges is the inescapable fact that hydrogen damage problems are immensely complex, requiring understanding of time-cycle dependent processes operating at the atomic scale to impact behaviour manifest at the macroscopic scale.

Planned Impact

In GREEN we envisage there are potentially Impacts in several domains: the nuclear Sector; the wider Clean Growth Agenda; Government Policy & Strategy; and the Wider Public.

The two major outputs from Green will be Human Capital and Knowledge:

Human Capital: The GREEN CDT will deliver a pipeline of approximately 90 highly skilled entrants to the nuclear sector, with a broad understanding of wider sector challenges (formed through the training element of the programme) and deep subject matter expertise (developed through their research project). As evidenced by our letters of support, our CDT graduates are in high demand by the sector. Indeed, our technical and skills development programme has been co-created with key sector employers, to ensure that it delivers graduates who will meet their future requirements, with the creativity, ambition, and relational skills to think critically & independently and grow as subject matter experts. Our graduates are therefore a primary conduit to delivering impact via outcomes of research projects (generally co-created and co-produced with end users); as intelligent and effective agents of change, through employment in the sector; and strong professional networks.

Knowledge: The research outcomes from GREEN will be disseminated by students as open access peer reviewed publications in appropriate quality titles (with a target of 2 per student, 180 in total) and at respected conferences. Data & codes will be managed & archived for open access in accordance with institutional policies, consistent with UKRI guidelines. We will collaborate with our counterpart CDTs in fission and fusion to deliver a national student conference as a focus for dissemination of research, professional networking, and development of wider peer networks.

There are three major areas where GREEN will provide impact: the nuclear sector; clean growth; Policy and Strategy and Outreach.

the nuclear sector: One of our most significant impacts will be to create the next generation of nuclear research leaders. We will achieve this by carefully matching student experience with user needs.

clean growth - The proposed GREEN CDT, as a provider of highly skilled entrants to the profession, is therefore a critical enabler in supporting delivery of both the Clean Growth agenda, Nuclear Industry Strategy, and Nuclear Sector Deal, as evidenced by the employment rate of our graduates (85% into the sector industry) and the attached letters of support.

Policy and Strategy: The GREEN leadership and supervisory team provide input and expert advice across all UK Governments, and also to the key actors in the nuclear industry (see Track Records, Sections 3.3 & 5.1, CfS). Thus, we are well positioned to inculcate an understanding of the rapidly changing nuclear strategy and policy landscape which will shape their future careers.

Outreach to the wider public: Building on our track record of high quality, and acclaimed activities, delivered in NGN, GREEN will deliver an active programme of public engagement which we will coordinate with activities of other nuclear CDTs. Our training programme provides skills based training in public and media communication, enabling our students to act as effective and authoritative communicators and ambassadors. Examples of such activities delivered during NGN include: The Big Bang Fair, Birmingham 2014 - 2017; British Science Week, 2013 - 2017; ScienceX, Manchester; 2016 - 2018; and The Infinity Festival, Cumbria, 2017.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S022295/1 01/04/2019 30/09/2027
2648427 Studentship EP/S022295/1 01/10/2020 30/09/2024 William Beavan