Development of Zero TE MRI to visualise cranial bones, nerves and vessels

Lead Research Organisation: King's College London
Department Name: Neuroimaging

Abstract

Aim of the PhD Project:
Exploit the unique properties of the Zero Echo-Time (ZTE) MRI sequence to accurately visualise cranial anatomy (bone, blood vessels, cranial nerves) that is difficult or impossible with conventional imaging.
Demonstrate the clinical benefit of ZTE anatomical imaging for surgical and radiation planning.
Project description/background A primary use of medical imaging is planning clinical procedures including surgery or radiation therapy for cancer. As surgical procedures become ever more advanced, medical imaging techniques must keep pace to provide detailed, personalised anatomical information. A particularly demanding example is maxillofacial surgery, which is key in the management of dental pain and debilitating headaches. Although the brain can be imaged in exquisite detail with MRI, the surrounding anatomy including the skull, jaw, teeth, cranial nerves, and major blood vessels is highly challenging due to intricate structures and different tissue types. While conventional MRI and CT can provide some contrasting information about soft tissue and bone respectively, it is not currently possible for either to provide the necessary images of all tissue types simultaneously. This project will utilise a unique form of MR called Zero Echo-Time (ZTE) imaging. Significant advantages of ZTE imaging include the ability to detect signal from bone, teeth & calcifications, improved visualisation of vessels, and robustness to magnetic susceptibility artefacts (1). ZTE hence gives a unique opportunity to image all aspects of anatomy in the head and neck in an integrated way in a single scanning session, while avoiding the use of X-rays inherent in a CT scan. An additional benefit of ZTE is that the sequence is near-silent, thus increasing patient comfort during scanning (2). The successful candidate will work with a team of expert MRI physicists and clinicians to create a ZTE examination suitable for imaging the fine anatomical structures outside of the brain. They will design suitable contrast preparation schemes and reconstruction techniques to highlight desired - or suppress irrelevant - features of anatomy. This will require close collaboration with clinicians to understand the specific needs for multiple applications. The project will suit a candidate with a background in physics, electrical engineering, biomedical engineering, or related discipline.

Planned Impact

Strains on the healthcare system in the UK create an acute need for finding more effective, efficient, safe, and accurate non-invasive imaging solutions for clinical decision-making, both in terms of diagnosis and prognosis, and to reduce unnecessary treatment procedures and associated costs. Medical imaging is currently undergoing a step-change facilitated through the advent of artificial intelligence (AI) techniques, in particular deep learning and statistical machine learning, the development of targeted molecular imaging probes and novel "push-button" imaging techniques. There is also the availability of low-cost imaging solutions, creating unique opportunities to improve sensitivity and specificity of treatment options leading to better patient outcome, improved clinical workflow and healthcare economics. However, a skills gap exists between these disciplines which this CDT is aiming to fill.

Consistent with our vision for the CDT in Smart Medical Imaging to train the next generation of medical imaging scientists, we will engage with the key beneficiaries of the CDT: (1) PhD students & their supervisors; (2) patient groups & their carers; (3) clinicians & healthcare providers; (4) healthcare industries; and (5) the general public. We have identified the following areas of impact resulting from the operation of the CDT.

- Academic Impact: The proposed multidisciplinary training and skills development are designed to lead to an appreciation of clinical translation of technology and generating pathways to impact in the healthcare system. Impact will be measured in terms of our students' generation of knowledge, such as their research outputs, conference presentations, awards, software, patents, as well as successful career destinations to a wide range of sectors; as well as newly stimulated academic collaborations, and the positive effect these will have on their supervisors, their career progression and added value to their research group, and the universities as a whole in attracting new academic talent at all career levels.

- Economic Impact: Our students will have high employability in a wide range of sectors thanks to their broad interdisciplinary training, transferable skills sets and exposure to industry, international labs, and the hospital environment. Healthcare providers (e.g. the NHS) will gain access to new technologies that are more precise and cost-efficient, reducing patient treatment and monitoring costs. Relevant healthcare industries (from major companies to SMEs) will benefit and ultimately profit from collaborative research with high emphasis on clinical translation and validation, and from a unique cohort of newly skilled and multidisciplinary researchers who value and understand the role of industry in developing and applying novel imaging technologies to the entire patient pathway.

- Societal Impact: Patients and their professional carers will be the ultimate beneficiaries of the new imaging technologies created by our students, and by the emerging cohort of graduated medical imaging scientists and engineers who will have a strong emphasis on patient healthcare. This will have significant societal impact in terms of health and quality of life. Clinicians will benefit from new technologies aimed at enabling more robust, accurate, and precise diagnoses, treatment and follow-up monitoring. The general public will benefit from learning about new, cutting-edge medical imaging technology, and new talent will be drawn into STEM(M) professions as a consequence, further filling the current skills gap between healthcare provision and engineering.

We have developed detailed pathways to impact activities, coordinated by a dedicated Impact & Engagement Manager, that include impact training provision, translational activities with clinicians and patient groups, industry cooperation and entrepreneurship training, international collaboration and networks, and engagement with the General Public.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S022104/1 01/10/2019 31/03/2028
2740751 Studentship EP/S022104/1 01/10/2022 30/09/2026 Teodora Catargiu