Understanding the Machinability of Titanium Alloy Components From a Range of Processing Routes to Inform Tooling Solutions for Next Generation Closed

Lead Research Organisation: University of Sheffield
Department Name: Materials Science and Engineering

Abstract

Ti-6Al-4V is the workhorse titanium alloy for the aerospace industry and is also used in biomedical and high value applications where corrosion resistance, biocompatibility, fatigue performance and high strength to weight ratio are important. However, the machinability of the alloy is largely driven by the processing route and microstructure developed. Conventionally, the same tool insert material tends to be used for Ti-6Al-4V components, regardless of processing route. But with more emerging additive and sintering routes coming online, there is a need to understand the relationship between upstream processing on downstream machining response - in order to tailor tooling solutions for different processing routes. The aim of this project is to understand the effect of a range of different processing routes for Ti-6Al-4V on the machinability and tool wear.

Ti-6Al-4V samples will be produced from both conventional forgings routes and emerging routes such as laser powder bed fusion, wire additive manufacturing and solid-state powder routes, such as field-assisted sintering technology and hot isostatic pressing. In addition, there is a need for scrap based feedstocks due to a move to sustainable closed-loop recycling of titanium alloys from aerospace into other sectors, such as automotive and offshore.

You will study the effects of the underlying subsurface microstructure (and texture) generated by the varied upstream liquid and solid-state processing routes on the tool insert wear life and coating behaviour. The outputs of this research will determine optimum tooling solutions for a range of closed-loop processing and recycling routes. You have access to materials and be trained in processing equipment to enable you to produce a whole range of Ti-6Al-4V samples for subsequent machining studies at Sandvik Coromant's R&D facility in the UK. You will use a host of characterisation facilities in Sheffield and Manchester including state-of-the-art microscopes and surface profiling techniques. You will also spend time with researchers in Sandvik Coromant, UK and Sweden and carry out specialised analysis on the tool inserts and substrate material. The project will also incorporate thermodynamic modelling and basic coding to help with the mechanistic understanding of the tool/Ti6Al-4V interaction.

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/S022635/1 01/10/2019 31/03/2028
2879613 Studentship EP/S022635/1 01/10/2023 30/09/2027 Jozef McGowan