Developing an error corrected quantum processor solution for commercial quantum computing

Lead Participant: UNIVERSAL QUANTUM LTD

Abstract

Quantum computers will transform numerous industrial sectors, from the major aerodynamic simulations used to optimise jet engine design, through artificial intelligence, machine learning and the data economy, to drug discovery. Quantum computers are set to be as game-changing as the development of conventional computers in the last century, as they will be able to solve high-impact problems which would take the fastest supercomputer billions of years. A primary goal of UK's National Quantum Technology Programme is translating the UK's academic excellence in developing practical quantum computers into economic prosperity, by building a quantum computing industry sector including relevant supply chains.

The biggest remaining challenges in realising universal quantum computation are in scaling up to fault-tolerant machines with millions of qubits. The quantum hardware developed in QCorrect will be capable of overcoming the limitations faced by competitors around the world propelling the UK to become a leader in commercial quantum computing. While competing platforms based on superconducting qubits are limited in the number of qubits they can realise because of the requirement to cool microchips to -273C, our platform is based on trapped-ions and does not require such cooling. Our platform is also suitable for implementation of efficient and scalable error-correction algorithms which improve the performance of the computer whilst reducing the hardware requirements.

The combination of these factors offers the opportunity to develop systems featuring much larger qubit numbers. Full silicon microchip integration will allow the creation of self-sufficient electronic quantum computing modules to be deployed and made cloud-accessible for end-user investigation during the project. Hardware/software co-development is led by system integrator Universal Quantum and quantum software developer Riverlane, together with leading subsystem manufacturers for vacuum systems (Edwards) and microwave technologies (TMD Technologies, Diamond Microwave) incubating a quantum computing supply chain in the UK. The University of Sussex will perform use-case demonstrations and deliver performance enhancements aided by theoretical innovations from Imperial College London.

In order to ensure a pathway to commercialisation, applied Computational Fluid Dynamics (CFD) experts at Rolls-Royce and STFC will work with Riverlane and UQ to develop a quantum approach to solving partial differential equations that underpin commercially-relevant simulations in the UK aerospace sector. Exploitation/dissemination partners Sia Partners will develop a roadmap to commercialisation of application-specific tools in CFD and Qureca will develop broader use-cases that depend on solving partial differential equations. The consortium will execute the first use-case demonstrations and streamline hardware/software development towards practical applications.

Lead Participant

Project Cost

Grant Offer

UNIVERSAL QUANTUM LTD £3,768,644 £ 2,638,051
 

Participant

EDWARDS LIMITED £350,320 £ 175,160
QURECA LTD £101,800 £ 71,260
UNIVERSITY OF SUSSEX £940,808 £ 940,808
DIAMOND MICROWAVE LIMITED £98,372 £ 68,860
IMPERIAL COLLEGE LONDON £403,814 £ 403,814
SIA PARTNERS UK PLC £214,491 £ 107,246
THE SCIENCE AND TECHNOLOGY FACILITIES COUNCIL
CPI TMD TECHNOLOGIES LIMITED £38,514 £ 19,257
ROLLS-ROYCE PLC £127,508 £ 63,754
RIVERLANE LTD £1,181,142 £ 826,799
INNOVATE UK
STFC - LABORATORIES £347,632 £ 347,632

Publications

10 25 50