APPQC: Advanced Practical Post-Quantum Cryptography From Lattices

Lead Research Organisation: King's College London
Department Name: Informatics

Abstract

Standardisation efforts for post-quantum public-key encryption and signatures are close to completion. At the same time the most recent decade has seen the deployment, at scale, of more advanced cryptographic algorithms where no efficient post-quantum candidates exist. These algorithms e.g. permit to give strong guarantees even after some parties were compromised, privacy-preserving contact lookups, credentials and e-cash. This project will tackle the challenge of "lifting" such constructions to the post-quantum era by pursuing three guiding questions:

- What is the cost of solving lattice problems with and without hints on a quantum computer? Answers to this question will provide confidence in the entire stack of lattice-based cryptography from "basic" to "advanced". Studying the presence of hints tackles side-channel attacks and advanced constructions.

- What are the lattice assumptions that establish feature- and (near) performance-parity with pre-quantum cryptography? Standard lattice assumptions do not seem to establish feature parity with pairing-based or even some Diffie-Hellman-based pre-quantum constructions, how can we achieve efficient and secure advanced practical post-quantum solutions?

- How efficient is a careful composition of lattice-base cryptography with other assumptions? If we want to deploy our post-quantum solutions in practice, we will need to design hybrid schemes that are secure if either of their pre- or post-quantum part is secure and to deploy many advanced lattice-based primitives in practice we need to carefully compose them with zero-knowledge proofs to rule out some attacks.

Lattice-based cryptography has established itself as a key technology to realise both efficient basic primitives like post-quantum encryption and advanced solutions such as computation with encrypted data and programs. It is thus well positioned to tackle the middle ground of advanced yet practical primitives for phase 2 of the post-quantum transition.

Publications

10 25 50