Identifying the regulation of striatal dopamine function by striatal astrocytes in health and parkinsonism

Lead Research Organisation: University of Oxford
Department Name: Physiology Anatomy and Genetics

Abstract

The neurotransmitter dopamine, in the brain region called the striatum, is vitally important for our everyday actions and motivations. Without dopamine we develop Parkinson's disease and cannot move, but with too much dopamine, we develop addictions. If we could understand more about how dopamine is controlled by the brain, we might better understand how the brain regulates these behaviours, and how we might treat them better in disease.

This project builds on a newly emerging area of neuroscience research that is transforming our understanding of the way brain circuits are regulated. In particular, new research suggests that neurons in the brain can be controlled by non-neuronal cells called astrocytes. In this project, we will explore whether astrocytes might control dopamine function. This is an area of biology which has been completely overlooked until now.

Astrocytes vastly outnumber neurons in the brain and have long been known to be important for generally maintaining the brain and its supply of nutrients. Our current understanding of astrocyte function in brain circuits lags significantly behind our understanding of neuronal function but is now beginning to grow rapidly thanks to the advent of new experimental tools to modulate astrocyte activity. Recent work with these new tools demonstrates that astrocytes have more roles than once believed, and that strikingly, they can play powerful roles in directly regulating neurotransmitter release. In this project, we will examine for the first time, the fundamentally important questions of whether astrocytes in the striatum can modulate dopamine release and function.

Until now, no-one has established whether or not astrocytes play a role in regulating dopamine release in the striatum. We have some new data which strongly suggest that astrocytes play an important role. Our first main aims will be to establish whether astrocytes in striatum dynamically modulate dopamine release, the mechanisms through which they might do it, and whether this impacts on dopamine-dependent behaviours. We will use state-of-the art tools, called chemogenetics and optogenetics, to specifically modulate the activity of astrocytes in mouse brains to understand their impact on dopamine function.

Our second main aim will be to understand better whether there are changes to the biology of astrocytes in the striatum in Parkinson's disease. Astrocytes have been implicated as playing a role in Parkinson's disease, as well as in other neurodegenerative diseases, in which they can lose their supportive roles and gain neurotoxic properties. We have some new data which suggest that there are changes to the way that astrocytes work in striatum in Parkinson's disease and that might have negative consequences for dopamine function in the striatum. In this project, we will develop a better understanding of how astrocytes change in humans as well as in animal models, and test whether and how this impacts negatively on dopamine function in Parkinson's disease.

Overall we expect this new and original project to greatly increase fundamental knowledge about how astrocytes control brain function in health and disease. It should cause a big shift in thinking. We expect to find that astrocytes are key players in governing dopamine function and that there are disruptions to the way that astrocytes operate and control dopamine function in Parkinson's disease. This work could also open up potential new avenues for drug discovery, by identifying disruptions to astrocyte biology that could be targets for future treatments for Parkinson's disease and other dopamine-related disorders.

Technical Summary

Emerging evidence indicates that brain astrocytes not only regulate ion balance and blood flow, but also regulate activity of synapses and neural circuits. Astrocytes express receptors and transporters for many transmitters, and consequently, they respond to neurotransmitter input, regulate transmitter levels and release gliotransmitters. Through these mechanisms, astrocytes can act as an extension of neural circuits to regulate neuronal output. With the emergence of new molecular tools to modulate and image astrocyte activity, previously neglected questions about astrocyte-neuron interactions can excitingly now be addressed for the first time.

The neurotransmitter dopamine (DA) is critical to the selection and learning of motivated behaviours, and is dysregulated in disorders spanning Parkinson's disease (PD) to addictions. The fundamental questions of whether astrocyte activity regulates the dynamic release and function of striatal DA, and whether there are changes to astrocyte biology in PD that impact on DA function, have not previously been investigated. We have obtained key pieces of data which support the hypotheses that (1) striatal astrocytes support DA release and (2) this interaction becomes maladaptive in PD. In this timely project, we will exploit new molecular tools that permit targeted manipulation of astrocyte activity to test these hypotheses fully. We will identify: whether and how striatal astrocytes govern DA output on a sub-second timescale; mechanisms and mediators (with a focus on GABA transporters and purinergic gliotransmitters); impact on DA-dependent behaviours; and dysregulation in mouse models and human PD. The findings of this project could radically revise current understanding of the mechanisms that regulate dopamine function, and contribute to a paradigm shift from current neuron-centric views of the mechanisms that gate neural circuits. This work could also provide candidate targets for new treatments for dopaminergic disease.

Publications

10 25 50
 
Description Characterisation of a novel GBA-L444P BAC transgenic mouse model of Parkinson's disease.
Amount £100,000 (GBP)
Funding ID 222380/Z/21/Z 
Organisation Wellcome Trust 
Sector Charity/Non Profit
Country United Kingdom
Start 10/2020 
End 10/2024
 
Description Collaborative Award in Science
Amount £3,743,939 (GBP)
Funding ID 223202/Z/21/Z 
Organisation Wellcome Trust 
Sector Charity/Non Profit
Country United Kingdom
Start 05/2022 
End 04/2027
 
Description Grant title: Mapping the modulatory landscape governing striatal dopamine signaling and its dysregulation in Parkinson's disease
Amount $8,993,238 (USD)
Funding ID ASAP-020370 
Organisation Aligning Sciences Across Parkinson's 
Sector Charity/Non Profit
Country United States
Start 11/2021 
End 10/2024
 
Description Identifying the regulation of striatal dopamine function by striatal astrocytes in health and parkinsonism
Amount £844,101 (GBP)
Funding ID MR/V013599/1 
Organisation Medical Research Council (MRC) 
Sector Public
Country United Kingdom
Start 04/2021 
End 04/2024
 
Description Interdisciplinary Bioscience DTP
Amount £80,000 (GBP)
Funding ID 2446134 
Organisation Biotechnology and Biological Sciences Research Council (BBSRC) 
Sector Public
Country United Kingdom
Start 10/2020 
End 09/2024
 
Description MRC DTP DPhil studentship Bethan O'Connor
Amount £90,000 (GBP)
Organisation Medical Research Council (MRC) 
Sector Public
Country United Kingdom
Start 10/2021 
End 09/2025
 
Description Pump-Priming Award: Targetting nAChRs on dopamine axons as a potential treatment for Parkinson's disease
Amount £10,000 (GBP)
Organisation University of Oxford 
Sector Academic/University
Country United Kingdom
Start 01/2021 
End 12/2021
 
Description ASAP Team Cragg 
Organisation Boston University
Country United States 
Sector Academic/University 
PI Contribution Team lead
Collaborator Contribution Co-Investigators and External Collaborators
Impact N/A
Start Year 2021
 
Description ASAP Team Cragg 
Organisation Karolinska Institute
Country Sweden 
Sector Academic/University 
PI Contribution Team lead
Collaborator Contribution Co-Investigators and External Collaborators
Impact N/A
Start Year 2021
 
Description ASAP Team Cragg 
Organisation Medical Research Council (MRC)
Department MRC Brain Network Dynamics Unit at the University of Oxford (BNDU)
Country United Kingdom 
Sector Public 
PI Contribution Team lead
Collaborator Contribution Co-Investigators and External Collaborators
Impact N/A
Start Year 2021
 
Description ASAP Team Cragg 
Organisation Peking University
Department College of Life Sciences
Country China 
Sector Academic/University 
PI Contribution Team lead
Collaborator Contribution Co-Investigators and External Collaborators
Impact N/A
Start Year 2021
 
Description ASAP Team Cragg 
Organisation Stanford University
Country United States 
Sector Academic/University 
PI Contribution Team lead
Collaborator Contribution Co-Investigators and External Collaborators
Impact N/A
Start Year 2021
 
Description (BOC) Public science event - IF-Oxford 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact IF Oxford science and ideas Festival, to educate and inspire young people ub science. Sparked inteerest, and enthusiasm.
Year(s) Of Engagement Activity 2022
URL https://scienceoxford.com/events/if-oxford-2022
 
Description (BOC) Volunteering at Science Saturdays, Museum of Natural History 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Public/other audiences
Results and Impact Volunteering at the Oxford Museum of Natural History's Science Saturdays events, hands-on science-based activities for families discussing the science of geology, entomology, microscopy and zoology
Year(s) Of Engagement Activity 2022
URL https://oumnh.ox.ac.uk/event/science-saturdays-38
 
Description (BOCO) Public Science event - DPAG Science in the Park 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Public/other audiences
Results and Impact Scientists frmo DPAG in a marquee in the University Parks, to answer questions and share fun facts about how bodies work. Exploring a range of topics, including blood, brain, DNA, heart, lungs, and the skeleton, using virtual reality (VR) augmented reality (AR) and hands-on activities.
SParked much interest.
Year(s) Of Engagement Activity 2022
URL https://www.dpag.ox.ac.uk/about-us/outreach/science-in-the-park
 
Description (KB) Primary School visit 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact A visit to a primaray school, to talk about the brain and body and how we study them, using body samples and microscopes. Sparked many questions, and excitement about the topics. Invited back the following year
Year(s) Of Engagement Activity 2023
 
Description Blog post for Parkinson's UK on Threlfell et al 2021 
Form Of Engagement Activity Engagement focused website, blog or social media channel
Part Of Official Scheme? No
Geographic Reach International
Primary Audience Patients, carers and/or patient groups
Results and Impact We wrote a lay version of our paper (Threlfell et al 2021) published in Frontiers in Cellular Neuroscience at https://www.dpag.ox.ac.uk/team/a-summary-of-threlfell-et-al-2021 and published an accompanying blog post for Parkinson's UK
Year(s) Of Engagement Activity 2021
URL https://medium.com/parkinsons-uk/bridging-the-gap-between-basic-research-and-people-with-parkinsons-...
 
Description Gave a Public Lecture (LB) 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Other audiences
Results and Impact Public online lecture
Year(s) Of Engagement Activity 2022
URL https://www.balliol.ox.ac.uk/events/2022/april/26/balliol-online-lecture
 
Description KB Primary School visit (2022) 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Schools
Results and Impact A visit to a primaray school, to talk about the brain and body and how we study them, using body samples and microscopes. Sparked many questions, and excitement about the topics. Invited back the following year
Year(s) Of Engagement Activity 2022
 
Description Mentor on UNIQ+ Digital Programme 
Form Of Engagement Activity Participation in an open day or visit at my research institution
Part Of Official Scheme? No
Geographic Reach National
Primary Audience Schools
Results and Impact (JL) A mentor on the UNIQ+ Digital Programme, which aims to introduce undergraduate students from under-represented backgrounds to postgraduate study at Oxford. Mentored students interested in pursuing postgraduate study in neuroscience, based on discussing our current research
Year(s) Of Engagement Activity 2021