Exploring 3D Nanopatterned Structures Fabricated by Plasma FIB

Lead Research Organisation: Queen's University Belfast
Department Name: Sch of Mathematics and Physics

Abstract

The end goal of the project is to produce and analyse 3D magnetic nanostructures (nanowires and nanotubes). Simulation is done with the help of micro-magnetic and atomic scale simulation software. Different geometries and sizes are considered in order to find stable structures with useful magnetic configurations. Some test structures will be produced in the next few months using the Plasma FIB at Glasgow University. Said structures will then be imaged and characterised by a specialised TEM.

Planned Impact

Academic
The development of a cohort of fifty young doctoral researchers who in the programme will acquire a unique set of technical abilities allied with working practice, managerial and enterprise skills.
The research to be undertaken by the cohort incorporates areas such as photonics, meta-materials, functional materials and plasmonics. The research programme is targeted at developing a suite of integrative technologies that address the requirements of heat assisted magnetic recording (HAMR). HAMR requires a highly manufacturable, rugged heterogeneous integration platform, encompassing semiconductor lasers, passive waveguides, rugged plasmonic devices and advanced magnetic materials. The successful development of HAMR will see a paradigm shift in the performance of data storage devices.
Advances in the above areas will see the CDT, supervisory staff and cohort develop a reputation and output profile that will lead to further basic research funding in the Universities and to the launch of academic careers for some of the cohort through attaining post-doctoral positions.

Industrial
The CDT brings together key companies who could form a complete UK manufacturing supply chain for HAMR technology. These companies include as founder partners - IQE as a supplier of custom epitaxy, Oclaro for volume laser production and Seagate for volume manufacturing of magnetic recording heads.
The CDT will result in the development and adoption of this low-cost heterogeneous integration technology, a technology than can also be applied in multiple markets. Although the HAMR environment is particularly harsh, many other consumer and society driven applications (such as widely deployable high speed internet) also require operation in harsh environments. The technology developed here will allow migration away from traditional expensive solutions such as laser packaging in temperature stabilised, gold plated, hermetic boxes.

Societal
The Engagement & Outreach Committee of the CDT along with the leadership, supervisory staff and cohort will proactively engage with the wider society to raise awareness of the underpinning science and engineering. The CDT will demonstrate how it supports a high technology manufacturing supply chain in which UK activity has a global significance and brings benefit to a large part of society. Notwithstanding other commercial applications that our end-users have, we will be able to highlight how the integration of underpinning science and engineering lies at the core of much high technology.

Economic.
Our key partner has a significant presence in the UK through employment of some 1500 people in manufacturing and R&D. The current operation is centred on a capital base of some £1.5B and contributes around £100M GVA p.a. to the UK economy. The societal need for increased data storage places this operation as a nexus of the global economy and consequently offers significant supply chain opportunity for the UK. The need to develop HAMR requires the development of the integration technology that lies at the core of our CDT. The outcomes of the CDT will inform future decisions that will underpin further corporate investment of £10M's to equip the partner and to recruit the necessary staff. We note that the key partner, in their letter of support, could absorb the entire cohort into employment over the next few years. Our other project partners will also benefit beyond HAMR. As examples; CST Global would apply novel lasers and integrated solutions to niche applications, Kelvin Nanotechnology will be able to exploit new integration expertise, OIPT need a pipeline of trained personnel that is currently not available in the UK, JEOL and FEI have interests in new imaging and metrology associated with new material and integration technologies. All the partners would benefit from a flow of PhD graduates trained in advanced material assessment.

Publications

10 25 50