📣 Help Shape the Future of UKRI's Gateway to Research (GtR)

We're improving UKRI's Gateway to Research and are seeking your input! Tell us what works, what doesn't, and how we can make GtR more user-friendly, impactful, and effective for the Research and Innovation community. Please send your feedback to gateway@ukri.org by 11 August 2025.

Mathematical modelling of lava flows undergoing rheological evolution

Lead Research Organisation: University of Bristol
Department Name: Mathematics

Abstract

Lava flows are the most common product of volcanic eruptions and pose a substantial hazard to property and infrastructure; as such, predicting the path of lava flows is a major goal in volcanological hazard management. Furthermore, volcanic lava flows can act as a "laboratory" for exploring how to include cooling and phase changes in the modelling of wide-ranging industrial fluid flows that also exhibit evolution of rheology (the manner in which a material deforms under imposed stress). Recent high-profile eruptions in Hawaii (2020-2021), Iceland (2021), and the Canary Islands (2021) have reinvigorated public interest in these flows, and have also provided significant quantities of data for the motivation and validation of fluid dynamical models, both in the form of research field data and in amateur videography. Prediction of lava emplacement requires fluid dynamic models that account for rheological changes during flow, particularly the progressive formation of a cooled crust. This project will achieve a transformation in our capacity to model lava flow emplacement through the modelling of three complex flow behaviours exhibited by volcanic lava flows: the intermittent emplacement of a Pahoehoe style lava flow in which successive toes inflate, stagnate and rupture to produce new toes; the formation of solidified levees at the boundaries of lava flows, resulting in self-channelisation and an enhanced supply of molten lava to the flow front; and transitions between ropy, consistent crust and rubbly, fragmented crust formation. The proposed project will use a mixture of novel asymptotic, numerical and experimental methods to model these enigmatic phenomena, using my own expertise in viscoplastic and shallow-layer flows and the support of a network of experts in non-Newtonian fluid dynamics and volcanology from the UK and abroad. The outcome of this work will be improved modelling of flows undergoing rheological evolution which will allow for improved prediction of lava flow paths and more efficient production processes in industries that involve cooling viscoplastic flows, including food processing and 3D printing.

Publications

10 25 50

publication icon
Taylor-West J (2024) Scraping of a thin layer of viscoplastic fluid in Physical Review Fluids

publication icon
Taylor-West J (2024) Lava Delta Formation: Mathematical Modeling and Laboratory Experiments in Journal of Geophysical Research: Earth Surface

 
Description 2024 IMA Small Grant Awards- A joint meeting of the Special Interest Groups in Biologically Active and Non-Newtonian Fluids
Amount £1,084 (GBP)
Organisation Institute of Mathematics and its Applications 
Sector Academic/University
Country United Kingdom
Start 02/2024 
End 02/2024