Bandgap engineering for optimal antimony chalcogenide solar cells
Lead Research Organisation:
University of Liverpool
Department Name: Physics
Abstract
Antimony sulphur-selenide Sb2(S,Se)3 is an emerging material for solar photovoltaics of significant promise. Currently the performance limit is ~10% PCE but theoretical predictions suggest it has the potential to outperform current thin-film market leader CdTe.
Sb2(S,Se)3 has two properties we can harness to improve performance: i) the bandgap easily can be tuned from 1.18-1.70eV by variation of the S/Se ratio, ii) it is can readily be doped both n and p-type via extrinsic dopants. These properties allow us to tailor and manipulate the absorber bandgap and/or doping level throughout the absorber material for improved carrier extraction. Importantly this bandgap manipulation can be achieved using a specially designed deposition capability which is a single step, industrially scalable deposition process. The project will develop this approach and link from materials synthesis with controlled doping, to device performance analysis and in-depth materials/interface characterisation. By tracking performance improvements in parallel to materials analysis we can identify and eliminate limitations at every step of the production process. This approach will not only allow us to make better use of the solar spectrum but also overcome the low voltages (< 40% of theoretical limit) which currently restrict Sb2(S,Se)3 device performance. We will achieve this by using designed bandgap grading with profiles to improve carrier lifetimes, reduce interfacial recombination and thereby improve generated voltage. We will also advance the state of the art by using intentional doping of the material via extrinsic dopants whilst in parralel tracking the impact on deep level behaviour and recombination - a radical departure from the current worldwide practice of relying on conductivity from native defects.
This project will accelerate the development process to capitalise on a material of huge potential. Our graded bandgap and controllably doped Sb2(S,Se)3 solar cells will open up new market opportunities in low-cost large scale power generation, but the ability to control the bandgap will also deliver opportunities for an expanded product range, such as wider gap devices for applications such as indoor PV (the 'internet of things'), top cells for Si-tandems or flexible devices.
Sb2(S,Se)3 has two properties we can harness to improve performance: i) the bandgap easily can be tuned from 1.18-1.70eV by variation of the S/Se ratio, ii) it is can readily be doped both n and p-type via extrinsic dopants. These properties allow us to tailor and manipulate the absorber bandgap and/or doping level throughout the absorber material for improved carrier extraction. Importantly this bandgap manipulation can be achieved using a specially designed deposition capability which is a single step, industrially scalable deposition process. The project will develop this approach and link from materials synthesis with controlled doping, to device performance analysis and in-depth materials/interface characterisation. By tracking performance improvements in parallel to materials analysis we can identify and eliminate limitations at every step of the production process. This approach will not only allow us to make better use of the solar spectrum but also overcome the low voltages (< 40% of theoretical limit) which currently restrict Sb2(S,Se)3 device performance. We will achieve this by using designed bandgap grading with profiles to improve carrier lifetimes, reduce interfacial recombination and thereby improve generated voltage. We will also advance the state of the art by using intentional doping of the material via extrinsic dopants whilst in parralel tracking the impact on deep level behaviour and recombination - a radical departure from the current worldwide practice of relying on conductivity from native defects.
This project will accelerate the development process to capitalise on a material of huge potential. Our graded bandgap and controllably doped Sb2(S,Se)3 solar cells will open up new market opportunities in low-cost large scale power generation, but the ability to control the bandgap will also deliver opportunities for an expanded product range, such as wider gap devices for applications such as indoor PV (the 'internet of things'), top cells for Si-tandems or flexible devices.
Publications
Don C
(2023)
Multi-Phase Sputtered TiO 2 -Induced Current-Voltage Distortion in Sb 2 Se 3 Solar Cells
in Advanced Materials Interfaces
Eensalu JS
(2023)
Sb2S3 Thin-Film Solar Cells Fabricated from an Antimony Ethyl Xanthate Based Precursor in Air.
in ACS applied materials & interfaces
Sindi D
(2024)
Comparison of one and two-stage growth approaches for close space sublimation deposition of Sb2Se3 thin film solar cells
in Materials Science in Semiconductor Processing
Wilson A
(2023)
Analysis of charge trapping and long lived hole generation in SrTiO 3 photoanodes
in Sustainable Energy & Fuels
Description | RENEW-PV Network |
Organisation | Tallinn University of Technology |
Country | Estonia |
Sector | Academic/University |
PI Contribution | Wrote the scientific case for the proposal, act as core management team member and science communication coordinator for the network |
Collaborator Contribution | Work close with the core group which coordinates research globally on emerging chalcogenide thin film solar cell materials. |
Impact | Participation in a number of Horizon Europe proposals. |
Start Year | 2022 |