REAGAN - Real-life applications with Gaussian boson sampling

Lead Research Organisation: Imperial College London
Department Name: Physics

Abstract

Since entering the information age, quantum science has already revolutionised the world in recent years. New opportunities to use the quantum advantages in real-life applications will impact on major industries across pharmaceuticals, defence, finance, and information technology. In this proposal, I aim to develop a high-dimension fully programmable Gaussian Boson Sampling (GBS) photonic processor, which is a near-term special-purpose model of photonic quantum computing serving as a promising candidate in solving real-life problems. There are two main goals here: (1) building a universal temporally encoded GBS device, and (2) using it in real-life quantum biomedical tasks. Thanks to the programmable and scalable silicon nitride photonic integrated circuit (PIC), I can build a large scale fully programmable and software scalable GBS device. The universality of this device is exhibited by supporting any arbitrary graph or Hamiltonian encoded on it, and this offers great versatility in the scope of problems that it can encode. Then, I will use this universal GBS device to solve drug design and vibronic spectra problems, and this GBS device can provide a computational speedup to perform these tasks. Many patients who have diseases like, Alzheimer's, ischaemia or cancers will be benefit from this GBS-accelerated drug design. Besides, this GBS device will provide a more efficient analysis technique for molecular spectroscopy, and enable wider researchers have a better understanding of non-Condon effects. These real-life applications can immediately stimulate the innovation of relevant biomedical and chemistry industries and research institutions, and will be adopted once maturity is reached.

Publications

10 25 50