Trapped Antihydrogen - Towards Spectroscopy
Lead Research Organisation:
Swansea University
Department Name: Physics
Abstract
Antihydrogen, the bound state of a positron and an antiproton, has recently been created under controlled conditions in the laboratory. The proposal seeks to build upon this by creating and trapping very cold antihydrogen using a magnetic gradient trap. This is an arrangement of magnetic fields that acts upon the small magnetic moment of the antiatom to produce a trapping force. However, such traps are shallow, and are currently only capable of holding neutral species with kinetic energies equivalent to a temperature below 1 Kelvin. To trap antihydrogen efficiently it must be produced at this temperature, or below. This requires several major changes and upgrades to our apparatus. These include a complete new magnet and cryogenic system, an octupole coil arrangement for the neutral trap, a new antihydrogen annihilation detector and upgrades to the performance of the positron accumulator. These changes are very technical in nature and the detailed case for support seeks to explain and justify them. However, all experiments with antihydrogen are difficult, so the question we address here is; why bother? We will explain this using the example of symmetry.It has been apparent for a while that fundamental asymmetries are hidden deep within nature. For example, in the 1950's it was discovered that the weak nuclear interaction violates parity conservation. However, the defective parity mirror can be mostly repaired by adding so-called charge conjugation, which, loosely speaking, means that interactions are unaffected when every particle is substituted by its antiparticle. For a while it was believed that the laws of nature would obey the combination of parity reversal and charge conjugation. But by the mid-1960's this was found to be untrue for a small class of reactions involving unusual, fleeting, particles called K-mesons. Since then it has been assumed that the small blemish in the combined charge conjugation/parity reversal mirror can be corrected by the application of time-reversal.However, this 3-way switch differs from the three discrete symmetries, or any 2-way combination of them because the charge/parity/time combination exists as a theorem that can be proved using the basic postulates of quantum field theory. Such theories are the cornerstone of our current understanding of the Universe, but are widely recognised as being incomplete. So testing this unique 3-way switch is going to the heart of our understanding of nature. Our current picture of the beginning of the Universe involves the Big Bang, which is thought to have been an energetic event that created equal amounts of matter and antimatter. Why then did they not all annihilate one another and leave a Universe devoid of matter? Searches for large amounts of remnant antimatter in the Universe, have failed to find any trace. Currently it is thought that our Universe is matter dominant; in other words asymmetric. The other fact to add to this is that the amount of asymmetry we can currently identify via numerous studies of fleeting and rare particles isn't enough to explain the existence of the material Universe.Thus, the evolution of the Universe is not fully understood and this makes testing the symmetries of nature of great importance. The creation of cold antihydrogen in amounts suitable for study, has opened a new door on symmetry; hopefully one which will allow precision laser spectroscopic comparisons with the spectral lines of hydrogen. Spectroscopy of hydrogen has recently reached fantastic precision for one line in particular, the two-photon 1S-2S transition, which has been determined to about 2 parts in a hundred million million. Amazingly, due to uncertainties in the properties of the proton, this level of precision is way beyond that achieved by theory. Comparisons of hydrogen and antihydrogen would be free of this effect. Our proposal will help make these comparisons a reality.
People |
ORCID iD |
Mike Charlton (Principal Investigator) | |
Helmut Telle (Co-Investigator) |
Publications
ALPHA Collaboration
(2009)
Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector.
in The Review of scientific instruments
Amole C
(2014)
The ALPHA antihydrogen trapping apparatus
in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Amoretti M
(2006)
Progress with cold antihydrogen
in Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Andresen G
(2008)
A novel antiproton radial diagnostic based on octupole induced ballistic loss
in Physics of Plasmas
Andresen G
(2010)
Antihydrogen formation dynamics in a multipolar neutral anti-atom trap
in Physics Letters B
Andresen G
(2008)
Compression of Antiproton Clouds for Antihydrogen Trapping
in Physical Review Letters
Andresen G
(2009)
Magnetic multipole induced zero-rotation frequency bounce-resonant loss in a Penning-Malmberg trap used for antihydrogen trapping
in Physics of Plasmas
Andresen G
(2007)
Antimatter plasmas in a multipole trap for antihydrogen.
in Physical review letters
Andresen G
(2008)
Production of antihydrogen at reduced magnetic field for anti-atom trapping
in Journal of Physics B: Atomic, Molecular and Optical Physics
Andresen GB
(2010)
Evaporative cooling of antiprotons to cryogenic temperatures.
in Physical review letters
Description | During this grant we made great strides forward in trapping antihydrogen. A neutral trap and a new detector was installed and commissioned. A number of particle and non-neutral plasma techniques have been developed, like compression of antiprotons using rotating electric dipole fields and antiproton and positron cooling. Towards the end of the grant we were able to produce cold enough antihydrogen and trap them. |
Exploitation Route | These results are a necessary precursor to boating the ultimate goal of testing CPT theories using the 1S-2S transition in antihydrogen and hydrogen. |
Sectors | Other |
URL | http://cern.ch/alpha |
Description | Our findings have been used by many scientists to justify theoretical and experimental work in number of areas of basic physics. Organisations such as CERN and our institutions have used our work to promote their respective missions, and in the public understanding of science. |
First Year Of Impact | 2010 |
Sector | Other |
Impact Types | Cultural |
Description | ALPHA Collaboration |
Organisation | European Organization for Nuclear Research (CERN) |
Department | ALPHA Experiment |
Country | Switzerland |
Sector | Public |
PI Contribution | As co-founders of the collaboration, we have provided funding and expertise in multiple areas of key importance to this experiment : Super conducting magnets, Lasers, Plasma physics, Trap physics, Antiproton physics, Antitrapping, Positrons, Positron accumulation, Cryogenics. |
Collaborator Contribution | Partners and expertise (in parenthesis) are come from Brazil (Lasers), Canada (Detectors/DAQ), Denmark (Lasers, Antihydrogen), UK (Detectors, Plasma physics plus the above), US (plasma physics, Simulation). The contributations are estimated based on 10 year running of the experiment with 30 academics contributing cash for running and maintenance and about 20 FTE's per year of running plus 3M of contributions of kit. |
Impact | This is an enormously successful collaboration having resulted in 4 Nature papers and a large volume of other papers as well as heavy representation in the media. It is physics-multidisciplinary in that the collaboration spans several normally separate areas of physics : cryogenics, plasma physics, atomic physics, particle physics, fundamental physics, laser physics, positron physics, and spectroscopy |
Start Year | 2006 |
Description | CERN |
Organisation | European Organization for Nuclear Research (CERN) |
Country | Switzerland |
Sector | Academic/University |
Start Year | 2006 |
Description | CERN Open Weekend: 2 talks about Antimatter |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Public/other audiences |
Results and Impact | A large number of question after the talks I don't know |
Year(s) Of Engagement Activity | 2013 |
Description | Times Cheltenham Science Festival: Particle Physics: An Introduction" co-presented with Dr Tom Whyntie |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | Yes |
Geographic Reach | National |
Primary Audience | Public/other audiences |
Results and Impact | A number of questions after the talk were answered None |
Year(s) Of Engagement Activity | 2013 |
URL | http://www.cheltenhamfestivals.com/science/whats-on/2013/particle-physics-an-introduction/ |