Resilience Fund for High Bias2

Lead Participant: REDWAVE LABS LTD

Abstract

Navigation using space-based satellite signals underlies many critical technologies across the UK. Most advanced navigation technologies rely on the signals from networks known as the Global Navigation Satellite System (GNSS) to remain accurate over long distances. Loss of these signals result in an unstable navigation systems and increasingly less accurate location and direction estimation during operation.

GNSS signals may be lost accidentally from criminal activity or due to military action. For example, in 2018 several passenger flights off the Norwegian coast lost GNSS signals due to signal 'jamming' from military exercises. In addition, 'Spoofing' or deliberately transmitting false guidance signals has been demonstrated as an insidious cyberweapon that can deliberately mislead and fool cargo or passenger vessels. As systems are increasingly automated, the consequences of the loss of GNSS signals dramatically increase and may include loss of property, or in the extreme case, loss of life. Local on-board instruments can provide measurements to stabilise current navigation system technology without GNSS signals. Quantum technology-based sensors have the potential to provide stability to navigation systems over long periods of time due to the unique combination of high sensitivity to motion with superb isolation from changes in the surrounding environment. High-BIAS2 will demonstrate the ability of a quantum rotation sensor's ability to stabilise the orientation of aircraft guidance system in the absence of GNSS signals. Local stabilisation using quantum technology will decrease the reliance of navigation systems on GNSS and provides a measure of protection against signal loss, jamming, and spoofing to increase safety and security.

Lead Participant

Project Cost

Grant Offer

 

Participant

REDWAVE LABS LTD

Publications

10 25 50