Targeting Kir4.1 To Control Brain Excitability And Seizures
Lead Research Organisation:
University College London
Department Name: Institute of Neurology
Abstract
Neuronal activity can rapidly elevate extracellular potassium in the brain. Potassium elevations are mechanistically related to increases in nerve cell excitability, potentially leading to abnormal network behaviours such as in epilepsy. Astroglia are essential for maintaining potassium balance, through a buffering mechanism engaging their sodium-potassium pumps. However, new evidence attributes the dynamic regulation of extracellular potassium mainly to astroglial channels of the Kir4.1 type whereas downregulation of these channels has been associated with enhanced seizure susceptibility and, in the long term, sclerotic abnormalities of brain tissue.
Despite the importance of Kir4.1 for brain excitability control, the causal relationships between Kir4.1 expression, potassium dynamics, local neuronal excitability and synaptic function remain poorly understood. The lack of progress stems from the poorly understood and often counteracting consequences of extracellular potassium rises, from the lack of tools to monitor potassium dynamics in brain tissue, and from the poor access to the sponge-like, nanoscopic morphology of astroglia.
The main goal of the present proposal is therefore to understand how the Kir4.1-dependent potassium buffering by astrocytes regulates neural excitability and synaptic circuit function, and whether targeting these mechanisms, pharmacologically or genetically, can alter susceptibility to runaway excitation and seizures. Thus, the central hypothesis is that the varied expression of astroglial Kir4.1 regulates, in a mechanistically predictable manner, cell excitability and synaptic signal transfer. The key translational aspect of the proposal is that the controlled manipulation of Kir4.1 expression should ameliorate pathological changes in neural excitability, such as those during epilepsy or cortical spreading depression.
To achieve our goal, we will take advantage of our novel and cutting-edge experimental and theoretical approaches. We have established gene-targeting protocols to enable single-cell studies in Kir4.1-overexpressing astrocytes while simultaneously monitoring neurotransmitter release at local synaptic connections. We have embarked on a novel nanoengineering technology to monitor potassium, which involves encapsulation of the ratiometric optical sensor into ion-permeable, biologically compatible microcapsules. We have established a novel biophysical modelling platform that enables theoretical probing of the intra- and extracellular potassium dynamics in realistic astrocyte models. We have developed a novel multi-electrode electrocorticography technique based on flexible graphene transistor arrays enabling full-band current recordings in awake animals.
These and related methodological breakthroughs, backed by a large body of pilot and proof-of-principle data, helped us to formulate a feasible research strategy for achieving our main goal. The plan includes five specific objectives addressed in five work packages. The results will provide new knowledge about the mechanisms by which astroglia regulate neuronal excitability through the Kir4.1-dependent control of extracellular potassium dynamics. Based on such knowledge, a therapeutic strategy could be developed that helps reduce brain susceptibility to runaway excitation, such as seen in epilepsy and related disorders.
Despite the importance of Kir4.1 for brain excitability control, the causal relationships between Kir4.1 expression, potassium dynamics, local neuronal excitability and synaptic function remain poorly understood. The lack of progress stems from the poorly understood and often counteracting consequences of extracellular potassium rises, from the lack of tools to monitor potassium dynamics in brain tissue, and from the poor access to the sponge-like, nanoscopic morphology of astroglia.
The main goal of the present proposal is therefore to understand how the Kir4.1-dependent potassium buffering by astrocytes regulates neural excitability and synaptic circuit function, and whether targeting these mechanisms, pharmacologically or genetically, can alter susceptibility to runaway excitation and seizures. Thus, the central hypothesis is that the varied expression of astroglial Kir4.1 regulates, in a mechanistically predictable manner, cell excitability and synaptic signal transfer. The key translational aspect of the proposal is that the controlled manipulation of Kir4.1 expression should ameliorate pathological changes in neural excitability, such as those during epilepsy or cortical spreading depression.
To achieve our goal, we will take advantage of our novel and cutting-edge experimental and theoretical approaches. We have established gene-targeting protocols to enable single-cell studies in Kir4.1-overexpressing astrocytes while simultaneously monitoring neurotransmitter release at local synaptic connections. We have embarked on a novel nanoengineering technology to monitor potassium, which involves encapsulation of the ratiometric optical sensor into ion-permeable, biologically compatible microcapsules. We have established a novel biophysical modelling platform that enables theoretical probing of the intra- and extracellular potassium dynamics in realistic astrocyte models. We have developed a novel multi-electrode electrocorticography technique based on flexible graphene transistor arrays enabling full-band current recordings in awake animals.
These and related methodological breakthroughs, backed by a large body of pilot and proof-of-principle data, helped us to formulate a feasible research strategy for achieving our main goal. The plan includes five specific objectives addressed in five work packages. The results will provide new knowledge about the mechanisms by which astroglia regulate neuronal excitability through the Kir4.1-dependent control of extracellular potassium dynamics. Based on such knowledge, a therapeutic strategy could be developed that helps reduce brain susceptibility to runaway excitation, such as seen in epilepsy and related disorders.
Technical Summary
Neural activity elevates extracellular K+ and thus boosts cell excitability, potentially leading to runaway excitation, such as epileptiform activity. Astrocytes dynamically control K+, mainly by engaging Kir4.1 channels, and Kir4.1 downregulation has been related to seizure susceptibility. However, the causal relationships between the Kir4.1 expression patterns, the external K+ dynamics, local neuronal excitability and synaptic function remain poorly understood. This knowledge gap hampers our search for feasible routes of therapeutic intervention.
We aim therefore to understand how the Kir4.1-dependent K+ buffering regulates network excitability and synaptic circuit function in the brain, and whether targeting Kir4.1 function, pharmacologically or genetically, can alter susceptibility to overexcitation and seizures. Our research strategy involves five specific objectives, taking advantage of the newly established techniques in acute slices and in vivo, including: gene-targeting protocols enabling visualisation of Kir4.1-overexpressing astrocytes while monitoring glutamate release at local synapses; a nano-technology to monitor extracellular K+ landscapes in situ using a microencapsulated ratiometric FRET dye; a computational platform ASTRO for theoretical probing of K+ dynamics in realistic astrocyte models; and a novel multi-electrode electrocorticography technique based on flexible graphene transistor arrays enabling full-band current recordings in awake animals.
These and related breakthroughs, backed by a large body of pilot results and proof-of-principle tests, helped formulate a feasible strategy to achieve our goal. The outcome will provide new knowledge about the mechanisms by which astroglia regulate neuronal excitability through the Kir4.1-dependent control of K+ dynamics. Based on such knowledge, a therapeutic strategy could be developed to help reduce brain susceptibility to runaway excitation, such as in epilepsy and related disorders
We aim therefore to understand how the Kir4.1-dependent K+ buffering regulates network excitability and synaptic circuit function in the brain, and whether targeting Kir4.1 function, pharmacologically or genetically, can alter susceptibility to overexcitation and seizures. Our research strategy involves five specific objectives, taking advantage of the newly established techniques in acute slices and in vivo, including: gene-targeting protocols enabling visualisation of Kir4.1-overexpressing astrocytes while monitoring glutamate release at local synapses; a nano-technology to monitor extracellular K+ landscapes in situ using a microencapsulated ratiometric FRET dye; a computational platform ASTRO for theoretical probing of K+ dynamics in realistic astrocyte models; and a novel multi-electrode electrocorticography technique based on flexible graphene transistor arrays enabling full-band current recordings in awake animals.
These and related breakthroughs, backed by a large body of pilot results and proof-of-principle tests, helped formulate a feasible strategy to achieve our goal. The outcome will provide new knowledge about the mechanisms by which astroglia regulate neuronal excitability through the Kir4.1-dependent control of K+ dynamics. Based on such knowledge, a therapeutic strategy could be developed to help reduce brain susceptibility to runaway excitation, such as in epilepsy and related disorders
Publications
Hills KE
(2022)
Converging Mechanisms of Epileptogenesis and Their Insight in Glioblastoma.
in Frontiers in molecular neuroscience
Kopach O
(2023)
Human neutrophils communicate remotely via calcium-dependent glutamate-induced glutamate release.
in iScience
Kopach O
(2022)
Multi-target action of ß-alanine protects cerebellar tissue from ischemic damage.
in Cell death & disease
Magloire V
(2023)
Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network
in Current Biology
Michaluk P
(2022)
Monitoring cell membrane recycling dynamics of proteins using whole-cell fluorescence recovery after photobleaching of pH-sensitive genetic tags.
in Nature protocols
Rusakov D
(2022)
Avoiding interpretational pitfalls in fluorescence imaging of the brain
in Nature Reviews Neuroscience
Rusakov DA
(2024)
Avoiding bias in fluorescence sensor readout.
in Nature reviews. Neuroscience
Rusakov DA
(2023)
A misadventure of the correlation coefficient.
in Trends in neurosciences
Description | EURAMET Health (HTL) Panel |
Geographic Reach | Europe |
Policy Influence Type | Participation in a guidance/advisory committee |
Impact | The panel provides reviews, evaluations, and guidance pertaining to the implementation of novel biomedical tools and techniques. |
URL | https://www.euramet.org/about-euramet |
Description | Inhibitory brain dynamics for adaptive behaviour |
Amount | £4,055,445 (GBP) |
Funding ID | 223131/Z/21/Z |
Organisation | Wellcome Trust |
Sector | Charity/Non Profit |
Country | United Kingdom |
Start | 01/2022 |
End | 01/2027 |
Description | Principles of synapse-astrocyte networking in the brain |
Amount | £2,737,900 (GBP) |
Funding ID | 212251/Z/18/Z |
Organisation | Wellcome Trust |
Sector | Charity/Non Profit |
Country | United Kingdom |
Start | 09/2018 |
End | 10/2023 |
Title | 2PE imaging protocols in the intact brain |
Description | 2PE imaging protocols in the intact brain, under a sensory stimulation paradigm |
Type Of Material | Technology assay or reagent |
Year Produced | 2020 |
Provided To Others? | No |
Impact | New lines of research and several new publications that have used this method |
Title | Computer simulation platforms ASTRO, BRAINCELL and ARACHNE |
Description | Computer simulation platforms ASTRO, BRAINCELL and ARACHNE for realistic simulations of individual brain cells and their networks |
Type Of Material | Technology assay or reagent |
Year Produced | 2021 |
Provided To Others? | Yes |
Impact | The 3Rs implication (Refinement and Replacement), multiple users reported. |
Title | Excitatory synapses and overexpression of astroglial K+ channel |
Description | Presynaptic functin monitoring under the overexpression of astroglial K+ channel Kir4.1 |
Type Of Material | Physiological assessment or outcome measure |
Year Produced | 2022 |
Provided To Others? | Yes |
Impact | Overexpression of Kir4.1 may regulate ise-dependen plasticity of local glutamatergic synapses |
Title | Two-photon excitation probing of new sensors |
Description | Two-photon excitation probing of new sensors |
Type Of Material | Physiological assessment or outcome measure |
Year Produced | 2020 |
Provided To Others? | Yes |
Impact | A new method to detect a previously undetectable receptors in live cells in organised brain tissue |
Title | BRAINCELL (in development) |
Description | A computational platform for detailed biophysical modelling of brain cells including neurons and glia. |
Type Of Material | Computer model/algorithm |
Year Produced | 2023 |
Provided To Others? | Yes |
Impact | >50 citations of the original ASTRO prototype |
URL | https://github.com/LeonidSavtchenko/BrainCellNew |
Description | 2PE imaging and patch clamp in the intact brain |
Organisation | Janelia Research Campus |
Country | United States |
Sector | Public |
PI Contribution | 2PE imaging in vivo |
Collaborator Contribution | 2PE imaging and patch-clamp in the intact brain |
Impact | Publications |
Start Year | 2020 |
Description | 2PE imaging and patch clamp in the intact brain |
Organisation | University of Bonn |
Country | Germany |
Sector | Academic/University |
PI Contribution | 2PE imaging in vivo |
Collaborator Contribution | 2PE imaging and patch-clamp in the intact brain |
Impact | Publications |
Start Year | 2020 |
Description | Fluorescence anisotropy imaging |
Organisation | King's College London |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | We design and run experiments in acute brain slices |
Collaborator Contribution | Development of a novel method of diffusion measurement on a nano-scale |
Impact | To date, the outcome of the aforementioned collaboration could be summarised as follows: 1. A brand new methodology of fluorescence anisotropy imaging, which enables nano-scale diffusion and miscro-viscosity measurements in live tissue has been set up at the PI's laboratory. It is currently being tested for optics optimisation and single-cell imaging in acute brain slices. 2. The paper dealing with nano-diffusion measurements in the brain extracellular space is in its final preparation stages. |
Start Year | 2018 |
Description | GABA and glutamate imaging with genetically encoded sensors |
Organisation | Janelia Research Campus |
Country | United States |
Sector | Public |
PI Contribution | Implementing physiological imaging experiments in slices and in vivo |
Collaborator Contribution | Providing newly created optical sensors |
Impact | Publications |
Start Year | 2020 |
Description | HHMI Janelia Campus |
Organisation | Howard Hughes Medical Institute |
Department | Janelia Research Campus |
Country | United States |
Sector | Academic/University |
PI Contribution | We have implemented their genetically encoded optical neurotranmistter indicators |
Collaborator Contribution | Supplied us with novel genetically encoded optical sensors |
Impact | article in press |
Start Year | 2022 |
Description | Super-resolution microscopy |
Organisation | University of Bordeaux |
Country | France |
Sector | Academic/University |
PI Contribution | 2PE imaging |
Collaborator Contribution | STED imaging |
Impact | publications |
Start Year | 2018 |
Title | An updated large-scale Monte-Carlo model of synaptic environment |
Description | A library of programs for Monte Carlo simulations of rapid molecular events inside and outside the synaptic cleft. Written by Drs L Savtchenko and K. Zheng. |
Type Of Technology | Software |
Year Produced | 2020 |
Impact | Several high-profile publications |
Title | Updated software for fluorecence anisotropy imaging |
Description | An image analysis tool allowing to translate two FLIM signals (parallel and perpendicular) into local rotation correlation parameter across the imaged region of interest. Applied to map local instantaneous molecular diffusion. |
Type Of Technology | Software |
Year Produced | 2020 |
Open Source License? | Yes |
Impact | Book chapter. Being implemented to gauge molecular diffusivity at nanoscale. |
Description | A reviewer and nominator of major scientific prizes, cinluding Nobel Prize, Kyoto Prize, Millennium Technology, others |
Form Of Engagement Activity | A formal working group, expert panel or dialogue |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Supporters |
Results and Impact | Being s reviewer and nominator of major scientific prizes, cinluding Nobel Prize, Kyoto Prize, Millennium Technology, others |
Year(s) Of Engagement Activity | 2020,2021,2022,2023,2024 |
Description | Ingternational seminars and session at international meetings |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Postgraduate students |
Results and Impact | Invited platform presentations |
Year(s) Of Engagement Activity | 2017,2018,2019,2020,2021,2022,2023,2024 |
Description | Membership of international advisory bodies and reviewing panels: |
Form Of Engagement Activity | A formal working group, expert panel or dialogue |
Part Of Official Scheme? | Yes |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | Decisions made Influencing science policy and funding |
Year(s) Of Engagement Activity | 2017,2018,2019,2020,2021,2022,2023,2024 |