Nuclear Physics Consolidated Grant
Lead Research Organisation:
University of Liverpool
Department Name: Physics
Abstract
The majority of the visible mass of the universe is made up of atomic nuclei that lie at the centre of atoms. Nuclear physics seeks to answer fundamental questions such as: "How do the laws of physics work when driven to the extremes? What are the fundamental constituents and fabric of the universe and how do they interact? How did the universe begin and how is it evolving? What is the nature of nuclear and hadronic matter?" The aim of our research is to study the properties of atomic nuclei and to measure the properties of hot nuclear matter in order to answer these questions. No one yet knows how heavy a nucleus can be; in other words, just how many neutrons and protons can be made to bind together. We will study the heaviest nuclei that can be made in the laboratory and determine their properties which will allow better predictions to be made for the "superheavies". For lighter nuclei we will explore in the region of the proton and neutron drip lines, which are the borders between bound and unbound nuclei. We will determine more precisely than ever before the location of these drip lines. Nuclei beyond the proton drip line have so much electrical charge that they are highly unstable and try to achieve greater stability through the process of proton emission. We will investigate how nuclear behaviour is affected when protons become unbound.
For these exotic systems we will also explore how the nucleus prefers to rearrange its shape, which can be a sphere, rugby ball, pear, etc. and how it stores its energy among the possible degrees of freedom. We will also investigate how the properties of these nuclei develop as we make them spin faster and faster. We will try to determine the precise nature of ultra high spin states in heavy nuclei, just before the nucleus breaks up due to fission. By violently removing a nucleon from a nucleus in a nuclear reaction at high energies and measuring its properties, we can investigate to what extent the nucleon "feels" the influence of its neighbouring nucleons, whether it is correlated with them. Such information tells us about the nuclear force inside the nucleus at different inter-nucleon distances. Nuclear matter can exist in different phases, analogous to the solid, liquid, gas and plasma phases in ordinary substances. By varying the temperature, density or pressure, nuclear matter can undergo a transition from one phase to another. In extreme conditions of density and temperature (about 100 thousands times more than the temperature at the heart of the sun!), a phase transition should occur and quarks and gluons (of which the protons and neutrons are made of) should exist in a new state of matter called the Quark-Gluon Plasma. By colliding nuclei together at high energies at the Large Hadron Collider at CERN, we will study properties of this new state of matter. Such information is not only important for nuclear physics but also to understand neutron stars and other compact astrophysical objects.
This programme of research will employ a large variety of experimental methods to probe many aspects of nuclear structure and the phases of strongly interacting matter, mostly using instrumentation that we have constructed at several world-leading accelerator laboratories. The work will require a series of related experiments at a range of facilities in order for us to gain an insight into the answers to the questions posed above. These experiments will help theorists to refine and test their calculations that have attempted to predict the properties of nuclei and nuclear matter, often with widely differing results. The resolution of this problem will help us to describe complex many-body nuclear systems and better understand conditions in our universe a few fractions of a second after the big bang.
For these exotic systems we will also explore how the nucleus prefers to rearrange its shape, which can be a sphere, rugby ball, pear, etc. and how it stores its energy among the possible degrees of freedom. We will also investigate how the properties of these nuclei develop as we make them spin faster and faster. We will try to determine the precise nature of ultra high spin states in heavy nuclei, just before the nucleus breaks up due to fission. By violently removing a nucleon from a nucleus in a nuclear reaction at high energies and measuring its properties, we can investigate to what extent the nucleon "feels" the influence of its neighbouring nucleons, whether it is correlated with them. Such information tells us about the nuclear force inside the nucleus at different inter-nucleon distances. Nuclear matter can exist in different phases, analogous to the solid, liquid, gas and plasma phases in ordinary substances. By varying the temperature, density or pressure, nuclear matter can undergo a transition from one phase to another. In extreme conditions of density and temperature (about 100 thousands times more than the temperature at the heart of the sun!), a phase transition should occur and quarks and gluons (of which the protons and neutrons are made of) should exist in a new state of matter called the Quark-Gluon Plasma. By colliding nuclei together at high energies at the Large Hadron Collider at CERN, we will study properties of this new state of matter. Such information is not only important for nuclear physics but also to understand neutron stars and other compact astrophysical objects.
This programme of research will employ a large variety of experimental methods to probe many aspects of nuclear structure and the phases of strongly interacting matter, mostly using instrumentation that we have constructed at several world-leading accelerator laboratories. The work will require a series of related experiments at a range of facilities in order for us to gain an insight into the answers to the questions posed above. These experiments will help theorists to refine and test their calculations that have attempted to predict the properties of nuclei and nuclear matter, often with widely differing results. The resolution of this problem will help us to describe complex many-body nuclear systems and better understand conditions in our universe a few fractions of a second after the big bang.
Planned Impact
Nuclear physics research and technology development has had a huge beneficial influence in our Society. Through low-carbon energy production, radiation detection for national security or environmental monitoring and cancer diagnosis and treatment in modern healthcare, the applications emerging from nuclear physics are numerous.
Recent high-profile scientific discoveries include:
- The confirmation of the existence of the superheavy chemical element 117, which was an APS top 10 physics news story in 2014. In collaboration with Lund and GSI, researchers from Liverpool demonstrated a way to identify new elements directly. This led to element 117 being named tennessine in 2016.
- ISOLDE was used to study the shape of the short-lived isotopes 220Rn and 224Ra. The data show that while 224Ra is pear shaped, 220Rn vibrates about this shape. The results of the Liverpool-led measurements, that also have implications for atomic EDM measurements, was selected as a top 10 breakthrough in physics by Physics World in 2013 and continues to receive strong interest from the media world-wide.
- The work at ultra-high spin in nuclei has been cited as one of the Science highlights of 2013 and in the major 2012 decadal report "Nuclear Physics: Exploring the Heart of Matter" and more recently as an article in the journal celebrating the Bohr, Mottelson and Rainwater Nobel prize.
- The ALICE measurement of the mass difference between 2H/anti-2H and 3He/anti-3He nuclei was published in Nature with a video summary and received attention in the international news media. Article metrics show that this paper was in the top 1% for online attention.
The University of Liverpool has significant industrial engagement programmes that support knowledge exchange and the development of future REF returnable impact cases with a focus on nuclear measurement techniques and instrumentation. Industrial collaborators include AWE, Canberra, Kromek, Ametek, John Caunt Scientific, Metropolitan Police, MoD, National Nuclear Laboratory, Rapiscan, Sellafield Ltd. and a large number of NHS Trusts.
The University Department of Physics is one of only three national training providers for the Modernising Scientific Careers Clinical Science (Medical Physics) MSc, funded by the NHS. This provides a unique opportunity to build collaborative research and Continuing Professional Development partnerships within the Healthcare sector.
Beyond satisfying human curiosity around the workings of nature, pure research in nuclear physics has also tremendous societal impact. The University of Liverpool has an excellent track record in public engagement and outreach in a subject that has a natural fascination for the public. Indeed, it fulfils the important role of educating the public in nuclear radiation and its wider aspects, both positive and negative and is important to drive interest in the study of STEM subjects. Nuclear Physicists are frequently invited to share their knowledge and talk about their research at schools, science festivals and community groups.
The University of Liverpool hosts the state-of-the-art Central Teaching Laboratory (CTL) facility. The CTL has a dedicated laboratory for Nuclear Physics and radiation measurements and schools and outreach activities will be held on a regular basis with University support. In November 2016 the CTL will host a Science Jamboree for 300 Cubs, Beavers and Brownies. We also plan a family day in the CTL with the aim of improving knowledge of both nuclear physics research and applications in energy, security and healthcare.
The Liverpool group has an extensive list of media interactions. In particular Professor Butler and Dr Harkness-Brennan have contributed to BBC TV and Radio broadcasts and have recorded Podcasts and other online resources for public engagement. The ALICE experiment featured prominently in the recent BBC production presented by Jim Al-Khalili on The Beginning and End on the Universe.
Recent high-profile scientific discoveries include:
- The confirmation of the existence of the superheavy chemical element 117, which was an APS top 10 physics news story in 2014. In collaboration with Lund and GSI, researchers from Liverpool demonstrated a way to identify new elements directly. This led to element 117 being named tennessine in 2016.
- ISOLDE was used to study the shape of the short-lived isotopes 220Rn and 224Ra. The data show that while 224Ra is pear shaped, 220Rn vibrates about this shape. The results of the Liverpool-led measurements, that also have implications for atomic EDM measurements, was selected as a top 10 breakthrough in physics by Physics World in 2013 and continues to receive strong interest from the media world-wide.
- The work at ultra-high spin in nuclei has been cited as one of the Science highlights of 2013 and in the major 2012 decadal report "Nuclear Physics: Exploring the Heart of Matter" and more recently as an article in the journal celebrating the Bohr, Mottelson and Rainwater Nobel prize.
- The ALICE measurement of the mass difference between 2H/anti-2H and 3He/anti-3He nuclei was published in Nature with a video summary and received attention in the international news media. Article metrics show that this paper was in the top 1% for online attention.
The University of Liverpool has significant industrial engagement programmes that support knowledge exchange and the development of future REF returnable impact cases with a focus on nuclear measurement techniques and instrumentation. Industrial collaborators include AWE, Canberra, Kromek, Ametek, John Caunt Scientific, Metropolitan Police, MoD, National Nuclear Laboratory, Rapiscan, Sellafield Ltd. and a large number of NHS Trusts.
The University Department of Physics is one of only three national training providers for the Modernising Scientific Careers Clinical Science (Medical Physics) MSc, funded by the NHS. This provides a unique opportunity to build collaborative research and Continuing Professional Development partnerships within the Healthcare sector.
Beyond satisfying human curiosity around the workings of nature, pure research in nuclear physics has also tremendous societal impact. The University of Liverpool has an excellent track record in public engagement and outreach in a subject that has a natural fascination for the public. Indeed, it fulfils the important role of educating the public in nuclear radiation and its wider aspects, both positive and negative and is important to drive interest in the study of STEM subjects. Nuclear Physicists are frequently invited to share their knowledge and talk about their research at schools, science festivals and community groups.
The University of Liverpool hosts the state-of-the-art Central Teaching Laboratory (CTL) facility. The CTL has a dedicated laboratory for Nuclear Physics and radiation measurements and schools and outreach activities will be held on a regular basis with University support. In November 2016 the CTL will host a Science Jamboree for 300 Cubs, Beavers and Brownies. We also plan a family day in the CTL with the aim of improving knowledge of both nuclear physics research and applications in energy, security and healthcare.
The Liverpool group has an extensive list of media interactions. In particular Professor Butler and Dr Harkness-Brennan have contributed to BBC TV and Radio broadcasts and have recorded Podcasts and other online resources for public engagement. The ALICE experiment featured prominently in the recent BBC production presented by Jim Al-Khalili on The Beginning and End on the Universe.
Organisations
- University of Liverpool (Lead Research Organisation)
- University of Manchester (Collaboration)
- Heidelberg University (Collaboration)
- McGill University (Collaboration)
- University of Surrey (Collaboration)
- Université Catholique de Louvain (Collaboration)
- Gesellschaft für Schwerionenforschung (Collaboration)
- University of Jyväskylä (Collaboration)
- Helmholtz Association of German Research Centres (Collaboration)
- European Organization for Nuclear Research (CERN) (Collaboration)
- Facility for Antiproton and Ion Research (Collaboration)
- Johannes Gutenberg University of Mainz (Collaboration)
- Lund University (Collaboration)
- UNIVERSITY OF EDINBURGH (Collaboration)
- University of Cologne (Collaboration)
- Rutherford Appleton Laboratory (Collaboration)
- Technical University of Darmstadt (Collaboration)
- TRIUMF (Collaboration)
- University of the West of Scotland (Collaboration)
- Daresbury Laboratory (Collaboration)
- University of Leuven (Collaboration)
Publications
Acharya S
(2018)
D-Meson Azimuthal Anisotropy in Midcentral Pb-Pb Collisions at sqrt[s]_{NN}=5.02 TeV.
in Physical review letters
Acharya S
(2019)
Study of the ?-? interaction with femtoscopy correlations in p p and p-Pb collisions at the LHC
in Physics Letters B
Acharya S
(2021)
ALICE Collaboration
in Nuclear Physics A
Acharya S
(2020)
Measurement of electrons from semileptonic heavy-flavour hadron decays at midrapidity in pp and Pb-Pb collisions at s NN = 5.02 TeV
in Physics Letters B
Acharya S
(2021)
? c + production in p p and in p -Pb collisions at s N N = 5.02 TeV
in Physical Review C
Acharya S
(2018)
Prompt and non-prompt $$\hbox {J}/\psi $$ J / ? production and nuclear modification at mid-rapidity in p-Pb collisions at $$\mathbf{\sqrt{ { s}_{\text {NN}}}= 5.02}$$ s NN = 5.02 TeV
in The European Physical Journal C
Acharya S
(2021)
First measurement of quarkonium polarization in nuclear collisions at the LHC
in Physics Letters B
Acharya S
(2019)
First Observation of an Attractive Interaction between a Proton and a Cascade Baryon.
in Physical review letters
Acharya S
(2019)
Measurement of charged jet cross section in p p collisions at s = 5.02 TeV
in Physical Review D
Description | Our research at the frontier of discrete-line gamma-ray spectroscopy has identified new collective structures such as octupole-vibrational states in radon isotopes, shape co-existence in mercury and caesium, unusual pairing effects in gadolinium and structure at the highest spin in erbium. These studies have been complemented by Coulomb excitation measurements of the octupole collectivity of radon and radium isotopes with neutron numbers (N) around 134 and barium with N=86, lifetime measurements of shape coexistence in mercury and lead nuclei, and rigid prolate shapes in exotic tungsten isotopes. Our laser spectroscopy programme has established the properties of many isotopes such as the charge radii of a wide range of silver and nickel isotopes that have proved crucial to microscopic descriptions of this fundamental property. We have measured the half-life of the proton emission from 149Lu, the most oblate-deformed proton emitter observed to date, a result that attracted global attention, and have identified several other proton emitters at the edge of nuclear stability. |
Exploitation Route | These outcomes will be used as the basis for future research, including investigations on the nature of octupole collectivity in neutron-rich barium and cerium isotopes, odd-A radium and even-even uranium isotopes relevant to new searches for atomic electric dipole moments, and quantifying the nature of shape coexistence in the neutron-deficient mercury/lead mass region. This will be achieved by exploiting a variety of probes: Coulomb excitation, (d,d'), and (d,p) using both Miniball and the ISOLDE Solenoidal Spectrometer at CERN, AGATA at Legnaro, and GRETINA at FRIB. Future research will also include laser-spectroscopy measurements of the radii of proton emitters, study the N=152 and Z=100 shell gaps of nobelium, californium and fermium nuclei using laser spectroscopy, search for new proton emitters and fine structure to learn about neutron orbitals at the Fermi surface, and search for elements 119 and 120. These experiments will exploit new developments in laser spectroscopy at Jyväskylä, ISOLDE and GSI, and the new MARA Low-Energy Branch at Jyväskylä. |
Sectors | Digital/Communication/Information Technologies (including Software) Education Energy Environment Healthcare Security and Diplomacy |
Description | NuPECC |
Geographic Reach | Multiple continents/international |
Policy Influence Type | Membership of a guideline committee |
Impact | The NuPECC Long Range Plan for all aspects of Nuclear Physics was published in 2017. NuPECC's mission is "to provide advice and make recommendations on the development, organisation, and support of European nuclear research and of particular projects." The report features the recommendations of NuPECC for the development of nuclear physics research in Europe followed by a comprehensive chapter on large and smaller facilities, existing, under construction or planned. The report has been discussed with national funding agencies by the NuPECC task force to foster awareness and good alignment of the research portfolios. |
URL | http://www.nupecc.org/pub/lrp17/lrp2017.pdf |
Description | STFC Standard Grant |
Amount | £419,256 (GBP) |
Organisation | Science and Technologies Facilities Council (STFC) |
Sector | Public |
Country | United Kingdom |
Start | 12/2009 |
End | 05/2013 |
Description | AIDA |
Organisation | Daresbury Laboratory |
Department | Nuclear Physics Support Group |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Overall design specification, testing and systems integration. |
Collaborator Contribution | Intellectual contributions to this research and development project, particularly in the ASIC design. |
Impact | Development of the Advanced Implantation Detector Array (AIDA) for experimental research programmes at GSI/FAIR. |
Start Year | 2007 |
Description | AIDA |
Organisation | Rutherford Appleton Laboratory |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Overall design specification, testing and systems integration. |
Collaborator Contribution | Intellectual contributions to this research and development project, particularly in the ASIC design. |
Impact | Development of the Advanced Implantation Detector Array (AIDA) for experimental research programmes at GSI/FAIR. |
Start Year | 2007 |
Description | AIDA |
Organisation | University of Edinburgh |
Department | School of Physics and Astronomy |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Overall design specification, testing and systems integration. |
Collaborator Contribution | Intellectual contributions to this research and development project, particularly in the ASIC design. |
Impact | Development of the Advanced Implantation Detector Array (AIDA) for experimental research programmes at GSI/FAIR. |
Start Year | 2007 |
Description | ALICE Collaboration |
Organisation | European Organization for Nuclear Research (CERN) |
Department | ALICE Collaboration |
Country | Switzerland |
Sector | Public |
PI Contribution | Data analysis of LHC data from Run1 and Run2 (heavy-flavour physics working group). ITS upgrade project: Monte Carlo simulations, construction of modules and staves for the Outer Barrel. Supervision of UG and PhD student projects. Meetings of ALICE-UK research groups (Univ. of Birmingham, Univ. of Liverpool, STFC Daresbury). Presentations at conferences, meetings and workshops. |
Collaborator Contribution | Access to beam time, data, GRID and other CERN infrastructure and resources, ALICE collaboration international network etc. |
Impact | Publications. Training of UG and PhD students and research staff. Invitations to speak at meetings, workshops, conferences. |
Start Year | 2012 |
Description | COLLAPS, ISOLDE Laser Spectroscopy |
Organisation | Catholic University of Louvain |
Country | Belgium |
Sector | Academic/University |
PI Contribution | Proposal and running of experiments. Contribution to equipment and consumables costs. |
Collaborator Contribution | Provision of laboratory apparatus and expertise. |
Impact | Active experiments directly related to the research proposal have been approved by the local Programme Advisory Committee. The experimental apparatus required and accelerator beam time have been made available. Several publications have been published or are in preparation. |
Start Year | 2013 |
Description | COLLAPS, ISOLDE Laser Spectroscopy |
Organisation | European Organization for Nuclear Research (CERN) |
Department | CERN - ISOLDE |
Country | Switzerland |
Sector | Academic/University |
PI Contribution | Proposal and running of experiments. Contribution to equipment and consumables costs. |
Collaborator Contribution | Provision of laboratory apparatus and expertise. |
Impact | Active experiments directly related to the research proposal have been approved by the local Programme Advisory Committee. The experimental apparatus required and accelerator beam time have been made available. Several publications have been published or are in preparation. |
Start Year | 2013 |
Description | COLLAPS, ISOLDE Laser Spectroscopy |
Organisation | Heidelberg University |
Country | Germany |
Sector | Academic/University |
PI Contribution | Proposal and running of experiments. Contribution to equipment and consumables costs. |
Collaborator Contribution | Provision of laboratory apparatus and expertise. |
Impact | Active experiments directly related to the research proposal have been approved by the local Programme Advisory Committee. The experimental apparatus required and accelerator beam time have been made available. Several publications have been published or are in preparation. |
Start Year | 2013 |
Description | COLLAPS, ISOLDE Laser Spectroscopy |
Organisation | Technical University of Darmstadt |
Country | Germany |
Sector | Academic/University |
PI Contribution | Proposal and running of experiments. Contribution to equipment and consumables costs. |
Collaborator Contribution | Provision of laboratory apparatus and expertise. |
Impact | Active experiments directly related to the research proposal have been approved by the local Programme Advisory Committee. The experimental apparatus required and accelerator beam time have been made available. Several publications have been published or are in preparation. |
Start Year | 2013 |
Description | GREAT |
Organisation | University of Jyvaskyla |
Country | Finland |
Sector | Academic/University |
PI Contribution | Led design and construction of GREAT. Spokesperson for many experiments. |
Collaborator Contribution | Contributions to design & constraction of GREAT. Experimental collaborators. |
Impact | Many publications. |
Description | GREAT collaboration |
Organisation | University of Jyvaskyla |
Department | Department of Physics |
Country | Finland |
Sector | Academic/University |
PI Contribution | Constructed GREAT spectrometer and TDR DAQ system. Spokesperson of many experiments. |
Collaborator Contribution | facility |
Impact | 24 outputs |
Description | GREAT collaboration |
Organisation | University of Jyvaskyla |
Department | Department of Physics |
Country | Finland |
Sector | Academic/University |
PI Contribution | Constructed GREAT spectrometer and TDR DAQ system. Spokesperson of many experiments. |
Collaborator Contribution | facility |
Impact | 24 publications |
Description | GSI Laser Spectroscopy |
Organisation | Helmholtz Association of German Research Centres |
Department | GSI Helmholtz Centre for Heavy Ion Research |
Country | Germany |
Sector | Public |
PI Contribution | Assist in set-up and running of experiments. Co-spokesperson of proposal (ENSAR coordinator). |
Collaborator Contribution | Equipment, facility and expertise. |
Impact | At least two publications currently in press. First measurement of an optical resonance in nobelium. |
Start Year | 2014 |
Description | GSI Laser Spectroscopy |
Organisation | Helmholtz Association of German Research Centres |
Department | Helmholtz Institute Mainz |
Country | Germany |
Sector | Academic/University |
PI Contribution | Assist in set-up and running of experiments. Co-spokesperson of proposal (ENSAR coordinator). |
Collaborator Contribution | Equipment, facility and expertise. |
Impact | At least two publications currently in press. First measurement of an optical resonance in nobelium. |
Start Year | 2014 |
Description | GSI Laser Spectroscopy |
Organisation | Johannes Gutenberg University of Mainz |
Country | Germany |
Sector | Academic/University |
PI Contribution | Assist in set-up and running of experiments. Co-spokesperson of proposal (ENSAR coordinator). |
Collaborator Contribution | Equipment, facility and expertise. |
Impact | At least two publications currently in press. First measurement of an optical resonance in nobelium. |
Start Year | 2014 |
Description | GSI Laser Spectroscopy |
Organisation | Technical University of Darmstadt |
Country | Germany |
Sector | Academic/University |
PI Contribution | Assist in set-up and running of experiments. Co-spokesperson of proposal (ENSAR coordinator). |
Collaborator Contribution | Equipment, facility and expertise. |
Impact | At least two publications currently in press. First measurement of an optical resonance in nobelium. |
Start Year | 2014 |
Description | GSI Laser Spectroscopy |
Organisation | University of Leuven |
Country | Belgium |
Sector | Academic/University |
PI Contribution | Assist in set-up and running of experiments. Co-spokesperson of proposal (ENSAR coordinator). |
Collaborator Contribution | Equipment, facility and expertise. |
Impact | At least two publications currently in press. First measurement of an optical resonance in nobelium. |
Start Year | 2014 |
Description | JYFL Laser Spectroscopy |
Organisation | University of Jyvaskyla |
Country | Finland |
Sector | Academic/University |
PI Contribution | Running of the laser spectroscopy set-up, contribution to equipment/consumable funding, spokesperson of several experiments. |
Collaborator Contribution | Provision of laboratory space, equipment and accelerator use. |
Impact | Active experimental proposals have been awarded accelerator beam time by the local Programme Advisory Committee. The experimental apparatus required to carry out the research has now been commissioned. Many publications in progress. |
Start Year | 2013 |
Description | JYFL Laser Spectroscopy |
Organisation | University of Manchester |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Running of the laser spectroscopy set-up, contribution to equipment/consumable funding, spokesperson of several experiments. |
Collaborator Contribution | Provision of laboratory space, equipment and accelerator use. |
Impact | Active experimental proposals have been awarded accelerator beam time by the local Programme Advisory Committee. The experimental apparatus required to carry out the research has now been commissioned. Many publications in progress. |
Start Year | 2013 |
Description | LISA |
Organisation | Daresbury Laboratory |
Department | Nuclear Physics Support Group |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Intellectual contributions to experimental research programme. |
Collaborator Contribution | Intellectual contribution to experimental research programme. |
Impact | Joint publications. |
Description | LISA |
Organisation | University of the West of Scotland |
Department | School of Physics |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Intellectual contributions to experimental research programme. |
Collaborator Contribution | Intellectual contribution to experimental research programme. |
Impact | Joint publications. |
Description | MINIBALL collaboration |
Organisation | European Organization for Nuclear Research (CERN) |
Department | ISOLDE Radioactive Ion Beam Facility |
Country | Switzerland |
Sector | Public |
PI Contribution | Expertise on Coulomb Excitation analysis, spokespersons of 2 active ISOLDE experiments |
Impact | several publications |
Description | MINIBALL collaboration |
Organisation | Lund University |
Department | Department of Physics |
Country | Sweden |
Sector | Academic/University |
PI Contribution | Expertise on Coulomb Excitation analysis, spokespersons of 2 active ISOLDE experiments |
Impact | several publications |
Description | MINIBALL collaboration |
Organisation | University of Cologne |
Department | Department of Physics |
Country | Germany |
Sector | Academic/University |
PI Contribution | Expertise on Coulomb Excitation analysis, spokespersons of 2 active ISOLDE experiments |
Impact | several publications |
Description | MINIBALL collaboration |
Organisation | University of Leuven |
Department | Department of Physics and Astronomy |
Country | Belgium |
Sector | Academic/University |
PI Contribution | Expertise on Coulomb Excitation analysis, spokespersons of 2 active ISOLDE experiments |
Impact | several publications |
Description | R3B Collaboration (NUSTAR) |
Organisation | Facility for Antiproton and Ion Research |
Department | Nuclear Structure, Astrophysics and Reactions |
Country | Germany |
Sector | Public |
PI Contribution | Collaborative research/experiments. Leadership in design and construction of detection systems (e.g. Si Tracker and associated EDAQ). Data analysis and monte carlo simulations (supervision of PhD students), scientific input (experimental proposals, authorship of publications...). Manpower (technical and research staff, PhD students) for construction of equipment and running experiments.. Presentations at collaboration meetings, workshops, conferences. |
Collaborator Contribution | Access to research large-scale facility and beam time, instrumentation for experiments, technical support, PhD students and research staff, etc. T. Aumann spokesperson of R3B collaboration. |
Impact | Publications. PhD theses (S. Paschalis, J. Taylor). Training of PhD students and research staff. Invitations to speak at meetings, workshops, conferences. Project leadership of Si tracker (NUSTAR-UK project grant). |
Description | R3B Collaboration (NUSTAR) |
Organisation | Facility for Antiproton and Ion Research |
Country | Germany |
Sector | Private |
PI Contribution | Collaborative research/experiments. Leadership in design and construction of detection systems (e.g. Si Tracker and associated EDAQ). Data analysis and monte carlo simulations (supervision of PhD students), scientific input (experimental proposals, authorship of publications...). Manpower (technical and research staff, PhD students) for construction of equipment and running experiments.. Presentations at collaboration meetings, workshops, conferences. |
Collaborator Contribution | Access to research large-scale facility and beam time, instrumentation for experiments, technical support, PhD students and research staff, etc. T. Aumann spokesperson of R3B collaboration. |
Impact | Publications. PhD theses (S. Paschalis, J. Taylor). Training of PhD students and research staff. Invitations to speak at meetings, workshops, conferences. Project leadership of Si tracker (NUSTAR-UK project grant). |
Description | R3B Collaboration (NUSTAR) |
Organisation | Helmholtz Association of German Research Centres |
Department | GSI Helmholtz Centre for Heavy Ion Research |
Country | Germany |
Sector | Public |
PI Contribution | Collaborative research/experiments. Leadership in design and construction of detection systems (e.g. Si Tracker and associated EDAQ). Data analysis and monte carlo simulations (supervision of PhD students), scientific input (experimental proposals, authorship of publications...). Manpower (technical and research staff, PhD students) for construction of equipment and running experiments.. Presentations at collaboration meetings, workshops, conferences. |
Collaborator Contribution | Access to research large-scale facility and beam time, instrumentation for experiments, technical support, PhD students and research staff, etc. T. Aumann spokesperson of R3B collaboration. |
Impact | Publications. PhD theses (S. Paschalis, J. Taylor). Training of PhD students and research staff. Invitations to speak at meetings, workshops, conferences. Project leadership of Si tracker (NUSTAR-UK project grant). |
Description | Research collaborators |
Organisation | Daresbury Laboratory |
Department | Nuclear Physics Support Group |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Intellectual contributions to research programme and joint research papers. |
Collaborator Contribution | Intellectual contributions to research programme and joint research papers. |
Impact | Many joint research papers. |
Description | Research collaborators |
Organisation | University of Jyvaskyla |
Department | Department of Physics |
Country | Finland |
Sector | Academic/University |
PI Contribution | Intellectual contributions to research programme and joint research papers. |
Collaborator Contribution | Intellectual contributions to research programme and joint research papers. |
Impact | Many joint research papers. |
Description | Research collaborators |
Organisation | University of Surrey |
Department | Department of Physics |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Intellectual contributions to research programme and joint research papers. |
Collaborator Contribution | Intellectual contributions to research programme and joint research papers. |
Impact | Many joint research papers. |
Description | TASCA Collaboration |
Organisation | Gesellschaft für Schwerionenforschung |
Department | Nuclear Physics (Superheavy Elements) |
Country | Germany |
Sector | Academic/University |
PI Contribution | Parts of the detection system, Manpower, Data Analysis, Monte Carlo Simulation, Intellectual Input |
Collaborator Contribution | Technical Support for Experiment |
Impact | Confirmation of Element 114 and New isotope 277Hs (Duellmann et al, PRL 104 2010 252701) Spectroscopy of 253No (Anderson et al, NIMA622 2010 164) |
Start Year | 2006 |
Description | TASCA Collaboration |
Organisation | Helmholtz Association of German Research Centres |
Department | Helmholtz Institute Mainz |
Country | Germany |
Sector | Academic/University |
PI Contribution | Parts of the detection system, Manpower, Data Analysis, Monte Carlo Simulation, Intellectual Input |
Collaborator Contribution | Technical Support for Experiment |
Impact | Confirmation of Element 114 and New isotope 277Hs (Duellmann et al, PRL 104 2010 252701) Spectroscopy of 253No (Anderson et al, NIMA622 2010 164) |
Start Year | 2006 |
Description | TASCA Collaboration |
Organisation | Johannes Gutenberg University of Mainz |
Country | Germany |
Sector | Academic/University |
PI Contribution | Parts of the detection system, Manpower, Data Analysis, Monte Carlo Simulation, Intellectual Input |
Collaborator Contribution | Technical Support for Experiment |
Impact | Confirmation of Element 114 and New isotope 277Hs (Duellmann et al, PRL 104 2010 252701) Spectroscopy of 253No (Anderson et al, NIMA622 2010 164) |
Start Year | 2006 |
Description | TRIUMF Laser Spectroscopy |
Organisation | McGill University |
Country | Canada |
Sector | Academic/University |
PI Contribution | Proposal and running of experiments. Contribution to equipment and consumables. |
Collaborator Contribution | Provision of laboratory space, apparatus and experience. |
Impact | Active experiments directly related to the research proposal have been approved by the local Programme Advisory Committee. The experimental apparatus required and accelerator beam time have been made available. |
Start Year | 2013 |
Description | TRIUMF Laser Spectroscopy |
Organisation | TRIUMF |
Country | Canada |
Sector | Academic/University |
PI Contribution | Proposal and running of experiments. Contribution to equipment and consumables. |
Collaborator Contribution | Provision of laboratory space, apparatus and experience. |
Impact | Active experiments directly related to the research proposal have been approved by the local Programme Advisory Committee. The experimental apparatus required and accelerator beam time have been made available. |
Start Year | 2013 |
Title | ISOLDESolenoidalSpectrometer/ISSSort: v3.0 |
Description | This release combines a large number of changes over the past year or so, some bug fixes and a couple of long-awaited enhancements. The main enhancements are in the ability to read simulated data from NPTool and PACE4. The histogrammer now makes a complete set of recoil time-random plots that can be used for subtraction, although the user must make the subtraction themselves. Some bug fixes included the n-side mapping, array histogram z bin limits, and some energy-loss and pulse-height-correction fixes. What's Changed Fixed missing dep for "make -j". by @hanstt in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/18 Silencing some compiler warnings. by @inkdot7 in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/19 Try a CI action file. by @inkdot7 in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/20 Add recoil E and dE eloss spectra. by @dj-clarke in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/21 Extend ex histograms by @ACeulemans in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/22 Print as (int) in error output. by @inkdot7 in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/24 Small bug fix and improvements to energy loss and pulse-height correction calculation by @berjones in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/25 B jones correct nside mapping by @berjones in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/23 Bug in autocal residuals plot by @dj-clarke in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/27 Fix bug #26 reported by Andreas Ceulemans by @lpgaff in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/28 Revert some changes and apply correct fix for issue #26 by @lpgaff in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/29 Update histogram limits for the z axis of the array by @lpgaff in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/30 Make -j fix by @inkdot7 in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/31 Correct the module indexing of detecors from nptool by @berjones in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/32 Histogrammer updates by @lpgaff in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/33 Set the Sumw2 method by default on histograms by @lpgaff in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/34 New Contributors @hanstt made their first contribution in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/18 @inkdot7 made their first contribution in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/19 @berjones made their first contribution in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/25 @lpgaff made their first contribution in https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/pull/28 Full Changelog: https://github.com/ISOLDESolenoidalSpectrometer/ISSSort/compare/v2.4...v3.0 |
Type Of Technology | Software |
Year Produced | 2024 |
Open Source License? | Yes |
Impact | All data from the ISOLDE Solenoidal Spectrometer is being analysed with this software. |
URL | https://zenodo.org/doi/10.5281/zenodo.10694756 |
Title | MiniballSort |
Description | This release contains lots of changes during the 2023 experimental campaign. Some are mentioned from memory below, but the list is not exhaustive. The main reason for making a release at this point is to allow people to benchmark their analysis to a common version of the code. After the upcoming analysis meeting, there will be new suggestions and bug fixes that will go in to the next release. What's Changed Corrected some mistakes in the particle-gamma-gamma and particle-gamma-electron histogramming logic. Fixed a bug in the pBeta histograms that plots the velocity used for Doppler correction. Improved the EventBuilder to include a hit window for segments and addback. Added the pad detector to the particle events, so that ?E-E events can be constructed. Added a warning when multiple detectors are assigned to the same electronics channel. Implemented the correct CFD algorithm for traces. Geometry of the CD detector has been improved to better determine the phi angle. The converter for MIDAS files now tracks time warps and time jumps, printing warnings to the terminal. An option is available to discard corrupted buffers due to the July-September 2023 data readout bug in MIDAS. An extra command line option -ebis is available to discard data that is outside of the EBIS window, to speed up data sorting online. Many many bug fixes... New Contributors @konstantinstoychev made their first contribution in https://github.com/Miniball/MiniballSort/pull/5 @inkdot7 made their first contribution in https://github.com/Miniball/MiniballSort/pull/9 @lpgaff made their first contribution in https://github.com/Miniball/MiniballSort/pull/11 Full Changelog: https://github.com/Miniball/MiniballSort/compare/v1.0...v1.1 |
Type Of Technology | Software |
Year Produced | 2023 |
Impact | All data from Miniball experiments running from 2022 onwards is being analysed with this software. |
URL | https://zenodo.org/doi/10.5281/zenodo.7867978 |
Description | ALICE guide visits |
Form Of Engagement Activity | Participation in an open day or visit at my research institution |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Public/other audiences |
Results and Impact | Visits for public to ALICE detector at CERN , ongoing program done at CERN |
Year(s) Of Engagement Activity | 2018 |
Description | International Women Day |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | Local |
Primary Audience | Other audiences |
Results and Impact | Panel Q&A ans discussion around the screening of the film 'Picture a scientist' by Sharon Shattuck & Ian Cheney (https://www.pictureascientist.com/) |
Year(s) Of Engagement Activity | 2022 |
Description | Lead Editor Special Issue NPNI for the Year of the Periodic Table |
Form Of Engagement Activity | A magazine, newsletter or online publication |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Professional Practitioners |
Results and Impact | Special Issue of Nuclear Physics News International to celebrate the UNESCO year of the Periodic Table |
Year(s) Of Engagement Activity | 2019 |
URL | http://www.nupecc.org/?display=npn/issues |
Description | PANS |
Form Of Engagement Activity | A formal working group, expert panel or dialogue |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Public/other audiences |
Results and Impact | PANS (Public Awareness of Nuclear Science) is an expert committee of NuPECC and the EPS for the promotion of Nuclear Science across Europe |
Year(s) Of Engagement Activity | 2018,2019 |
URL | http://www.nupecc.org/pans/ |
Description | School Visit (Holy Cross) |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | Local |
Primary Audience | Schools |
Results and Impact | School Workshop "Meet a scientist" With several activities surrounding it. |
Year(s) Of Engagement Activity | 2019 |
Description | Visit of ALICE experiment at CERN/LHC by a delegation of British MPs (Marielle Chartier, February 2018) |
Form Of Engagement Activity | Participation in an open day or visit at my research institution |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Policymakers/politicians |
Results and Impact | Official VIP visit by a delegation of a dozen British MPs to CERN, including the LHC and the ALICE experiment. Promoted the excellence of fundamental research performed at CERN and the positive impact it has on our society inlcuding techological advances, training opportunites of skilled staff, etc. |
Year(s) Of Engagement Activity | 2018 |