EPSRC Centre for Doctoral Training in Condensed Matter Physics

Lead Research Organisation: University of Bristol
Department Name: Physics

Abstract

Condensed matter physics is a major underpinning area of science and technology. For example, the physics of electrons in solids underpins much of modern technology and will continue to do so for the foreseeable future. We propose to create a Centre for Doctoral Training (CDT) which will address the national need to develop researchers equipped with the skill sets and perspective to make worldwide impact in this area. The research themes covered address some very fundamental questions in science such as the physics of superconductors, novel magnetic materials, single atomic layer crystals, plasmonic structures, and metamaterials, and also more applied topics in the power electronics, optoelectronics and sensor development fields. There are strong connections between fundamental and applied condensed matter physics.

The goal of the Centre is to provide high calibre graduates with a focussed but comprehensive training programme in the most important physical aspects of these important materials, from intelligent design (first principles electronic structure calculations and modelling), via cutting-edge materials synthesis, characterisation and sophisticated instrumentation, through to identification and realisation of exciting new applications. In addition programme development will emphasise transferable skills including business & enterprise, outreach and communication. As stated in the impact section, physics-dependent businesses are of major importance to the UK economy.

Planned Impact

The Institute of Physics has estimated that physics-dependent businesses directly contribute 8.5% to the UK's economic output, employ more than a million people and generated exports amounting to more than £100bn in 2009. They go on to say: "It is important for businesses to have access to a range of highly skilled (and motivated) individuals capable of thinking 'outside of the box', particularly physics-trained postgraduates due to the highly numerate, analytical and problemsolving skills that are acquired during their training." If funded, the graduates of this CDT will have such skills and motivation. We would hope that this would significantly contribute towards satisfying the UK's need for trained scientists, particularly in the field of condensed matter physics. The impact would go further than this. By working more closely with industry and other partner organisations, we would reshape the conventional PhD programme to improve the experience for all.

In addition to the training aspect of the CDT there would be an important research impact. The Universities of Bristol and Bath have many world-leading researchers across the condensed matter field. By working with the high-quality students that we hope to recruit into the programme we will produce significant cutting edge research in condensed matter. The research would bear on some of the grand challenges facing condensed matter physics such as: understanding the emergence of new phenomena far from equilibrium; the nanoscale design of functional materials such as graphene; and harnessing quantum Physics for new technologies. Ultimately, this would contribute to improvements in many technologies, for example, energy or data storage technology.

Publications

10 25 50