Magma accumulation and inflation mechanisms at Fernandina volcano, Galapagos Islands

Lead Research Organisation: University of Edinburgh
Department Name: Sch of Geosciences

Abstract

Volcanism involving molten rock ('magma') with a low silica content ('basalt') is a fundamental component of the Earth system, critical to continental break-up, formation of new oceanic crust, and the growth of ocean islands. Basaltic volcanism also poses a significant hazard to those living near such volcanoes, destroying property, infrastructure, and livelihoods through lava flows, tephra fall, and gas emissions. The timing, size, style, and location of such eruptions is determined by the ascent, storage, and migration of magma, which take place under the ground, hidden from direct observation. Consequently, much of our understanding relies on measurements of small earthquakes and deformation of the Earth's surface caused by the movement of magma.

We will make new measurements of the earthquakes that result from the accumulation of magma at Fernandina, a large and very active volcano in the western Galápagos Islands, Ecuador. Since August 2022, the observation of earthquakes and uplift at Fernandina indicate that large volumes of magma are ascending to shallow levels in the volcano, potentially heralding a future eruption. However, the remote location of Fernandina means that the existing monitoring network is not able to record this activity with the resolution necessary to understand the key processes that are taking place. By urgently installing a dense network of modern seismometers, we will capture an important and novel dataset which will tell us about how the volcano accommodates the new magma and the internal structure and properties of the volcano. These data will underpin new approaches to modelling the behaviour of these systems, and ultimately to be better able to forecast future eruptions worldwide.

Publications

10 25 50
 
Description This project recorded 12 months of seismic data from Fernandina volcano in the Galapagos Islands, during a period of shallow magma accummulation. Very preliminary data processing has confirmed that the data are of high quality, and provide the first ever locations of earthquakes on Fernandina. These locations indicate that magma accummulation is at least partly accommodated by asymetric ('trapdoor') uplift of the inner caldera at Fernandina along the main ring fault. The data also suggest considerable seismicity in the SE of the island, and a previously unkown intrusion at Darwin volcano. Further work on these data is expected to produce more accurate earthquake locations and magnitudes, and important insights in to the dynamics of the volcano.
Exploitation Route The seismic data from this project are in the process of being made available for the community. When properly analysed, the work will be of significance ot eh volcano community worldwide, particularly those responsible for monitoring volcanoes in Hawaii and Iceland. It is expected that the results will form the basis of a larger proposal in the next few months.
Sectors Environment

 
Description The new understanding of the volcanic activity in the western Galapagos islands that has resulted from this work has informed the local agencies about the best approaches for volcano monitoring and hazard management in the area.
First Year Of Impact 2023
Sector Environment
Impact Types Societal