Hydrogen Combustion for Aero Gas Turbines
Lead Research Organisation:
Loughborough University
Department Name: Aeronautical and Automotive Engineering
Abstract
The UK aerospace industry must address the zero-carbon challenge if it is to maintain its position at the forefront of the world aerospace industry. Up until now the industry has been reliant on the use of fossil fuels for the primary propulsive source. Hence modern gas turbine combustion systems have been optimised over the past 60 years to meet various operability requirements (e.g. low emissions, safe and stable combustion over a wide range of conditions etc.) based around the properties of Kerosene. However, at the current time a variety of alternative energy sources, with different properties, are being considered as an enabler to decarbonisation. One potential solution is the combustion of hydrogen which will require significant changes to the combustion system due to the different fuel properties relative to that of kerosene. These include, for example, higher reaction rates, flame speeds and flame temperatures. This requires the development of more radical combustion technology but offers potentially greater environmental benefits. These include the elimination of CO, CO2 and non-volatile Particulate matter (nvPM) from the exhaust stream issuing from the engine. The project will build on existing work within the UTC to develop concepts for a hydrogen fuelled combustion system. It will examine and down select from a number of concepts and assess their performance in terms of emissions, operability and thermal management. The project will utilise both numerical (CFD and CRN) and experimental methods to provide a deeper understanding of hydrogen combustion and how it can be incorporated into a modern aero gas turbine.
Planned Impact
1. Impact on the UK Aero-Propulsion and Power Generation Industry
The UK Propulsion and Power sector is undergoing disruptive change. Electrification is allowing a new generation of Urban Air Vehicles to be developed, with over 70 active programmes planning a first flight by 2024. In the middle of the aircraft market, companies like Airbus and Rolls-Royce, are developing boundary layer ingestion propulsion systems. At high speed, Reaction Engines Ltd are developing complex new air breathing engines. In the aero gas turbine sector Rolls-Royce is developing UltraFan, its first new architecture since the 1970s. In the turbocharger markets UK companies such as Cummins and Napier are developing advanced turbochargers for use in compounded engines with electrical drive trains. In the power generation sector, Mitsubishi Heavy Industries and Siemens are developing new gas turbines which have the capability for rapid start up to enable increased supply from renewables. In the domestic turbomachinery market, Dyson are developing a whole new range of miniature high speed compressors. All of these challenges require a new generation of engineers to be trained. These engineers will need a combination of the traditional Aero-thermal skills, and new Data Science and Systems Integration skills. The Centre has been specifically designed to meet this challenge.
Over the next 20 years, Rolls-Royce estimates that the global market opportunities in the gas turbine-related aftercare services will be worth over US$700 billion. Gas turbines will have 'Digital Twins' which are continually updated using engine health data. To ensure that the UK leads this field it is important that a new generation of engineer is trained in both the underpinning Aero-thermal knowledge and in new Data Science techniques. The Centre will provide this training by linking the University and Industry Partners with the Alan Turing Institute, and with industrial data labs such as R2 Data Labs at Rolls-Royce and the 'MindSphere' centres at Siemens.
2. Impact on UK Propulsion and Power Research Landscape
The three partner institutions (Cambridge, Oxford and Loughborough) are closely linked to the broader UK Propulsion and Power community. This is through collaborations with universities such as Imperial, Cranfield, Southampton, Bath, Surrey and Sussex. This will allow the research knowledge developed in the Centre to benefit the whole of the UK Propulsion and Power research community.
The Centre will also have impact on the Data Science research community through links with the CDT in Data Centric Engineering (DCE) at Imperial College and with the Alan Turning Institute. This will allow cross-fertilization of ideas related to data science and the use of advanced data analytics in the Propulsion and Power sectors.
3. Impact of training a new generation of engineering students
The cohort-based training programme of the current CDT in Gas Turbine Aerodynamics has proved highly successful. The Centre's independent Advisory Group has noted that the multi-institution, multi-disciplinary nature of the Centre is unique within the global gas turbine training community, and the feedback from cohorts of current students has been extremely positive (92% satisfaction rating in the 2015 PRES survey). The new CDT in Future Propulsion and Power will combine the core underlying Aero-thermal knowledge of the previous CDT with the Data Science and Systems Integration skills required to meet the challenges of the next generation. This will provide the UK with a unique cohort of at least 90 students trained both to understand the real aero-thermal problems and to have the Data Science and Systems Integration skills necessary to solve the challenges of the future.
The UK Propulsion and Power sector is undergoing disruptive change. Electrification is allowing a new generation of Urban Air Vehicles to be developed, with over 70 active programmes planning a first flight by 2024. In the middle of the aircraft market, companies like Airbus and Rolls-Royce, are developing boundary layer ingestion propulsion systems. At high speed, Reaction Engines Ltd are developing complex new air breathing engines. In the aero gas turbine sector Rolls-Royce is developing UltraFan, its first new architecture since the 1970s. In the turbocharger markets UK companies such as Cummins and Napier are developing advanced turbochargers for use in compounded engines with electrical drive trains. In the power generation sector, Mitsubishi Heavy Industries and Siemens are developing new gas turbines which have the capability for rapid start up to enable increased supply from renewables. In the domestic turbomachinery market, Dyson are developing a whole new range of miniature high speed compressors. All of these challenges require a new generation of engineers to be trained. These engineers will need a combination of the traditional Aero-thermal skills, and new Data Science and Systems Integration skills. The Centre has been specifically designed to meet this challenge.
Over the next 20 years, Rolls-Royce estimates that the global market opportunities in the gas turbine-related aftercare services will be worth over US$700 billion. Gas turbines will have 'Digital Twins' which are continually updated using engine health data. To ensure that the UK leads this field it is important that a new generation of engineer is trained in both the underpinning Aero-thermal knowledge and in new Data Science techniques. The Centre will provide this training by linking the University and Industry Partners with the Alan Turing Institute, and with industrial data labs such as R2 Data Labs at Rolls-Royce and the 'MindSphere' centres at Siemens.
2. Impact on UK Propulsion and Power Research Landscape
The three partner institutions (Cambridge, Oxford and Loughborough) are closely linked to the broader UK Propulsion and Power community. This is through collaborations with universities such as Imperial, Cranfield, Southampton, Bath, Surrey and Sussex. This will allow the research knowledge developed in the Centre to benefit the whole of the UK Propulsion and Power research community.
The Centre will also have impact on the Data Science research community through links with the CDT in Data Centric Engineering (DCE) at Imperial College and with the Alan Turning Institute. This will allow cross-fertilization of ideas related to data science and the use of advanced data analytics in the Propulsion and Power sectors.
3. Impact of training a new generation of engineering students
The cohort-based training programme of the current CDT in Gas Turbine Aerodynamics has proved highly successful. The Centre's independent Advisory Group has noted that the multi-institution, multi-disciplinary nature of the Centre is unique within the global gas turbine training community, and the feedback from cohorts of current students has been extremely positive (92% satisfaction rating in the 2015 PRES survey). The new CDT in Future Propulsion and Power will combine the core underlying Aero-thermal knowledge of the previous CDT with the Data Science and Systems Integration skills required to meet the challenges of the next generation. This will provide the UK with a unique cohort of at least 90 students trained both to understand the real aero-thermal problems and to have the Data Science and Systems Integration skills necessary to solve the challenges of the future.
Organisations
People |
ORCID iD |
| Ashley Van Bruygom (Student) |
Studentship Projects
| Project Reference | Relationship | Related To | Start | End | Student Name |
|---|---|---|---|---|---|
| EP/S023003/1 | 30/09/2019 | 30/03/2029 | |||
| 2446219 | Studentship | EP/S023003/1 | 30/09/2020 | 30/03/2025 | Ashley Van Bruygom |