Device Independent Quantum Information Processing
Lead Research Organisation:
Royal Holloway, Univ of London
Department Name: Mathematics
Abstract
Device-Independent Quantum Information Processing represents a new paradigm for quantum information processing: the goal is to design protocols to solve relevant information tasks without relying on any assumption on the devices used in the protocol. For instance, protocols for device-independent key distribution aim at establishing a secret key between two honest users whose security is independent of the devices used in the distribution. Contrary to standard quantum information protocols, which are based on entanglement, the main resource for device-independent quantum information processing is quantum non-locality. Apart from the conceptual interest, device-independent protocols offer important advantages from an implementation point of view: being device-independent, the realizations of these protocols, though technologically challenging, are more robust against device imperfections. Current and near-future technology offer promising perspectives for the implementation of device-independent protocols.
This project explores all these fascinating possibilities. Its main objectives are (i) obtaining a better characterization of non-local quantum correlations from an information perspective, (ii) improve existing and derive new application of this resource for device-independent quantum information processing and (iii) design feasible implementations of device-independent protocols. We plan to tackle these questions with an inter-disciplinary approach combining concepts and tools from Theoretical and Experimental Physics, Computer Science and Information Theory.
This project explores all these fascinating possibilities. Its main objectives are (i) obtaining a better characterization of non-local quantum correlations from an information perspective, (ii) improve existing and derive new application of this resource for device-independent quantum information processing and (iii) design feasible implementations of device-independent protocols. We plan to tackle these questions with an inter-disciplinary approach combining concepts and tools from Theoretical and Experimental Physics, Computer Science and Information Theory.
Planned Impact
See attached proposal.
People |
ORCID iD |
Jonathan Barrett (Principal Investigator) |
Publications

Bancal J
(2013)
Definitions of multipartite nonlocality
in Physical Review A

Barnum H
(2015)
Entropy, majorization and thermodynamics in general probabilistic theories
in Electronic Proceedings in Theoretical Computer Science

Barnum H
(2012)
Entropy and information causality in general probabilistic theories
in New Journal of Physics

Barrett J
(2013)
Memory attacks on device-independent quantum cryptography.
in Physical review letters

Barrett J
(2012)
Unconditionally secure device-independent quantum key distribution with only two devices
in Physical Review A

Barrett J
(2014)
No ?-epistemic model can fully explain the indistinguishability of quantum states.
in Physical review letters

Horsman C
(2014)
When does a physical system compute?
in Proceedings. Mathematical, physical, and engineering sciences

Lee C
(2015)
Computation in generalised probabilisitic theories
in New Journal of Physics

Lewis PG
(2012)
Distinct quantum states can be compatible with a single state of reality.
in Physical review letters

Masanes L
(2014)
Full Security of Quantum Key Distribution From No-Signaling Constraints
in IEEE Transactions on Information Theory
Related Projects
Project Reference | Relationship | Related To | Start | End | Award Value |
---|---|---|---|---|---|
EP/J008249/1 | 29/02/2012 | 29/09/2012 | £91,722 | ||
EP/J008249/2 | Transfer | EP/J008249/1 | 18/02/2013 | 16/07/2015 | £91,482 |
Description | Since the early days of quantum theory, it has been known that quantum systems can exhibit phenomena that defy any intuitive understanding. But it is only over the last twenty years or so that researchers have realized how to harness these strange phenomena for powerful kinds of information processing. The aim of the research was to develop a quantitative understanding of some of the distinctively non-classical features of quantum theory, and to develop a theory that explains how certain physical properties of systems described by a theory are related to information-processing power. An important property of quantum states, underlying the success of various important protocols, such as quantum cryptography, is that given two distinct quantum states it is not always possible to determine which is which. This would be natural if a quantum state merely expresses imperfect knowledge of some underlying reality. One key finding was that the quantitative statistics of quantum measurement outcomes are incompatible with this view. In addition to the theoretical work, we collaborated with an experimental team based in Innsbruck, led by Rainer Blatt, who performed the relevant quantum measurements on trapped ions. The experiment verifies quantum predictions to a very high precision. We also considered the relationship between the physics of a system and computational power. We introduced the concept of computation using devices that are characterized operationally, rather than having a given quantum description. We showed that a rigorous computational model can be defined, which makes it possible to characterize the class of problems that can be solved efficiently using a given set of devices. We were able to derive an upper bound on the power of a computer, given only the assumption that a principle related to spacial locality is obeyed. This bound can be seen as a fundamental limit on computational power that follows from the basic structure of how devices behave. |
Exploitation Route | Our proof that quantum statistics are incompatible with a view in which quantum states express imperfect knowledge of an underlying reality has been developed by other researchers. This has led to increasingly compelling demonstrations of this non-classical aspect of quantum theory, and various experimental teams have reported corresponding experiments. Other researchers have used the results as a basis for quantum protocols in which information theoretic tasks are achieved that are impossible with classical systems. Our understanding of the power of quantum computers is in its infancy, with the very great interest in quantum computers spurred by only a handful of known problems for which they seem to be faster than classical computers. There is very little existing knowledge on the connections between the structure of a physical theory, and the power of computers governed by that theory, and our work represents only a first step in this direction. We are currently working on taking our findings forward by describing the class of general physical theories that a quantum computer would be able to simulate efficiently. In addition to a better understanding of fundamental questions, this will lead to a new approach to the design of quantum algorithms. |
Sectors | Digital/Communication/Information Technologies (including Software) Other |
Description | The research is an investigation into fundamental science, with impacts upon society that can only be measured over the long term. There were a number of media articles describing the work, for example on the Oxford Science Blog and the popular website Ars Technica. I hope that these have inspired readers from the general public to take a greater interest in fundamental science. However, I have reported these articles elsewhere under Engagement Activities. |
Description | FQXi Large Grant -- Thermodynamic vs information theoretic entropies in probabilistic theories |
Amount | £73,279 (GBP) |
Organisation | Foundational Questions Institute (FQXi) |
Sector | Charity/Non Profit |
Country | United States |
Start | 08/2013 |
End | 08/2015 |
Description | FQXi Large Grant -- Time and the Structure of Quantum Theory |
Amount | £67,489 (GBP) |
Organisation | Foundational Questions Institute (FQXi) |
Sector | Charity/Non Profit |
Country | United States |
Start | 09/2012 |
End | 09/2014 |
Description | UK National Quantum Technologies Programme -- Oxford Quantum Hub |
Amount | £40,000,000 (GBP) |
Funding ID | EP/M013243/1 |
Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
Sector | Public |
Country | United Kingdom |
Start | 12/2014 |
End | 12/2019 |
Description | Ars Technica |
Form Of Engagement Activity | A press release, press conference or response to a media enquiry/interview |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Media (as a channel to the public) |
Results and Impact | I was interviewed by a journalist, who was preparing an article for the popular website Ars Technica. The article describes research of mine, including a new theorem that I published in collaboration with other researchers from Oxford, and the University of Sydney. |
Year(s) Of Engagement Activity | 2014 |
URL | http://arstechnica.com/science/2014/07/quantum-state-may-be-a-real-thing/ |
Description | Economist article |
Form Of Engagement Activity | A press release, press conference or response to a media enquiry/interview |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Media (as a channel to the public) |
Results and Impact | Interviewed by a journalist for an article on quantum cryptography that appeared in The Economist. |
Year(s) Of Engagement Activity | 2013 |
URL | http://www.economist.com/news/science-and-technology/21586529-quantum-cryptography-has-yet-deliver-t... |
Description | Oxford science blog |
Form Of Engagement Activity | A press release, press conference or response to a media enquiry/interview |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Public/other audiences |
Results and Impact | I was interviewed by a journalist writing for the Oxford Science Blog, run by the University of Oxford. The article "Counting Quantum Cards" reports a new theorem that I published, in collaboration with other researchers from Oxford and the University of Sydney. |
Year(s) Of Engagement Activity | 2014 |
URL | http://www.ox.ac.uk/news/science-blog/counting-quantum-cards |