Flexible Air Source Heat pump for domestic heating decarbonisation (FASHION)
Lead Research Organisation:
University of Glasgow
Department Name: School of Engineering
Abstract
The UK has set a target to reach net zero emissions by 2050. Heat accounts for nearly half of the UK's energy consumption. Among several possible solutions, heat pumps are considered as one of the most promising technologies for decarbonising the domestic heating sector. Among all heat pumps, air source heat pumps (ASHP) are the most cost-effective option for householders. the Committee on Climate Change (CCC) recommends mass deployment of heat pumps to comply with the net zero target, and their net zero 'Further Ambition' scenario includes the deployment of 19 million heat pumps in homes by 2050. However, the uptake of heat pumps in the UK is very low at present. In 2018, heat pump sales in the UK were around 27,000 units (most are ASHPs), significantly lower than other EU countries. This represents a grand challenge for the government, industry, business, and research communities.
There are a number of technological and non-technological barriers hindering the wide uptake of heat pumps, particularly air source heat pumps in the UK. There is a mismatch between the current ASHP products and the existing infrastructure and property configuration. Over 80% of houses in the UK use gas boilers for space heating, so their heat emitters (i.e., radiators) are designed for high temperature heat supply using gas boilers. However, most ASHPs available in the market have a relatively low heat production temperature. Secondly, ASHPs are vulnerable to ambient conditions. Their heating capacity and coefficient of performance drop dramatically as the ambient air temperature falls. Furthermore, frost starts to build up at the surface of the outdoor unit when the air temperature drops to around 6 C, so the outdoor units have to be regularly defrosted. Non-technical barriers have also played an important role behind the low uptake of heat pumps. The current UK heat pump market suffers from high capital cost and a low awareness of the product.
This project, based on the PI's pending patent (Application number: 2015531.3), aims to develop a novel flexible, multi-mode air source heat pump (ASHP). This offers energy-free defrosting and is capable of continuous heating during frosting, thus eliminating the backup heater that is required by current ASHPs. We will address the key technical and non-technical challenges through interdisciplinary innovations. Our project is also supported by leading industrial companies with substantial contributions (e.g. the compressor). The developed technology offers energy-free defrosting and can be operated at different modes to benefit from off-peak electricity and/or warm air during the daytime. It will be much more energy-efficient than the current products, and thus could facilitate rapid uptake of air source heat pumps, making an important contribution to the decarbonisation of the domestic heating sector in the UK.
There are a number of technological and non-technological barriers hindering the wide uptake of heat pumps, particularly air source heat pumps in the UK. There is a mismatch between the current ASHP products and the existing infrastructure and property configuration. Over 80% of houses in the UK use gas boilers for space heating, so their heat emitters (i.e., radiators) are designed for high temperature heat supply using gas boilers. However, most ASHPs available in the market have a relatively low heat production temperature. Secondly, ASHPs are vulnerable to ambient conditions. Their heating capacity and coefficient of performance drop dramatically as the ambient air temperature falls. Furthermore, frost starts to build up at the surface of the outdoor unit when the air temperature drops to around 6 C, so the outdoor units have to be regularly defrosted. Non-technical barriers have also played an important role behind the low uptake of heat pumps. The current UK heat pump market suffers from high capital cost and a low awareness of the product.
This project, based on the PI's pending patent (Application number: 2015531.3), aims to develop a novel flexible, multi-mode air source heat pump (ASHP). This offers energy-free defrosting and is capable of continuous heating during frosting, thus eliminating the backup heater that is required by current ASHPs. We will address the key technical and non-technical challenges through interdisciplinary innovations. Our project is also supported by leading industrial companies with substantial contributions (e.g. the compressor). The developed technology offers energy-free defrosting and can be operated at different modes to benefit from off-peak electricity and/or warm air during the daytime. It will be much more energy-efficient than the current products, and thus could facilitate rapid uptake of air source heat pumps, making an important contribution to the decarbonisation of the domestic heating sector in the UK.
Publications
Li W
(2022)
Heat transfer enhancement of water-cooled triply periodic minimal surface heat exchangers
in Applied Thermal Engineering
Li W
(2023)
An improved cavitation model with thermodynamic effect and multiple cavitation regimes
in International Journal of Heat and Mass Transfer
Li W
(2023)
Convective heat transfer in a thermal chimney for freshwater production in geothermal total flow systems
in Applied Thermal Engineering
Li W
(2022)
Heat transfer enhancement of twisted tape inserts in supercritical carbon dioxide flow conditions based on CFD and vortex kinematics
in Thermal Science and Engineering Progress
Li W
(2024)
Heat transfer enhancement of supercritical carbon dioxide in eccentrical helical tubes
in International Journal of Heat and Mass Transfer
Li W
(2022)
Heat transfer of supercritical carbon dioxide in a tube-in-tube heat exchanger-a CFD study
in The Journal of Supercritical Fluids
Li W
(2023)
Heat transfer enhancement of tubes in various shapes potentially applied to CO2 heat exchangers in refrigeration systems: Review and assessment
in International Journal of Thermofluids
Yu Z
(2022)
Grand Challenges in Heat Decarbonisation
in Frontiers in Thermal Engineering
Yu Z
(2022)
A flexible heat pump cycle for heat recovery
in Communications Engineering
Description | We invented and proved a modified and flexible Evans-Perkins heat pump cycle integrating heat recovery and storage which is then used as an ancillary heat source for the heat pump's operation. It operates in a quasi-two-stage mode to theoretically save up to 20% in compressor power consumption compared with single-stage cycles. We build a prototype with off-the-shelf parts and demonstrate a practical 3.7% power saving at a heat production temperature of 35 °C. Power saving will further increase with heat supply temperature. We also qualitatively show that hot refrigerant exiting the condenser can be directly used for defrosting the evaporator, providing additional energy saving. We revealed that under ideal conditions, the flexible heat pump cycle is thermodynamically similar to two-stage heat pump cycles with full subcooling or flash gas removal, but no intercooling. From the energy recovery perspective, the two-stage cycles recover and reuse some sensible heat carried by hot liquid refrigerant simultaneously using their high-stage compressor, whereas the flexible heat pump cycle decouples the recovery and reuse of such heat in time using a heat storage. However, the irreversible heat transfer via real heat exchangers during charging and discharging processes will reduce the benefits of the flexible heat pump cycle. The effectiveness of all these performance-enhancing methods strongly depends on the characteristics of refrigerants. |
Exploitation Route | The invention of the flexible heat pump cycle can be applied to all heat pump applications. |
Sectors | Energy |
URL | https://www.nature.com/articles/s44172-022-00018-3 |
Description | Presentation to Scottish Government - Office of the Chief Economic Adviser (OCEA): "Heat Pumps: Barriers to Adoption & The Path Forward." |
Geographic Reach | National |
Policy Influence Type | Contribution to a national consultation/review |
Description | (CO-COOL) - Collaborative development of renewable/thermally driven and storage-integrated cooling technologies |
Amount | € 892,400 (EUR) |
Funding ID | 101007976 |
Organisation | European Commission |
Sector | Public |
Country | European Union (EU) |
Start | 05/2021 |
End | 05/2025 |
Description | An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS) |
Amount | £1,022,621 (GBP) |
Funding ID | EP/W027593/1 |
Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
Sector | Public |
Country | United Kingdom |
Start | 01/2023 |
End | 08/2025 |
Description | ENSIGN: ENergy System dIGital twiN |
Amount | £4,340,128 (GBP) |
Funding ID | EP/X025322/1 |
Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
Sector | Public |
Country | United Kingdom |
Start | 08/2023 |
End | 08/2027 |
Description | Flexible Heat Pump Technology - from Concept to Applications |
Amount | £180,255 (GBP) |
Funding ID | IF\R1\231053 |
Organisation | The Royal Society |
Sector | Charity/Non Profit |
Country | United Kingdom |
Start | 01/2024 |
End | 12/2027 |
Description | Industrial Doctorate |
Amount | £30,000 (GBP) |
Funding ID | 217 |
Organisation | Energy Technology Partnership (ETP) |
Sector | Academic/University |
Country | United Kingdom |
Start | 09/2023 |
End | 09/2027 |
Description | Industurial doctorate |
Amount | £30,000 (GBP) |
Funding ID | 210 |
Organisation | Energy Technology Partnership (ETP) |
Sector | Academic/University |
Country | United Kingdom |
Start | 03/2023 |
End | 02/2027 |
Description | PhD studenship |
Amount | £45,000 (GBP) |
Organisation | Scottish Power Ltd |
Sector | Private |
Country | United Kingdom |
Start | 03/2023 |
End | 03/2027 |
Description | PhD studentship |
Amount | £45,000 (GBP) |
Organisation | Scottish and Southern Energy (SSE) |
Sector | Private |
Country | United Kingdom |
Start | 09/2023 |
End | 09/2027 |
Description | Transport Scotland Industry Engagement Fund |
Amount | £9,366 (GBP) |
Organisation | Scottish Enterprise |
Sector | Public |
Country | United Kingdom |
Start | 03/2022 |
End | 03/2023 |
Description | collaboration with Dr Yasser Mahmoudi larimi |
Organisation | University of Manchester |
Country | United Kingdom |
Sector | Academic/University |
PI Contribution | Academic collaboration in the area of energy storage. |
Collaborator Contribution | Dr Yasser Mahmoudi larimi has invited to participate a consortium for a large research EPSRC grant application. |
Impact | just started the collaboration |
Start Year | 2023 |
Description | collaboration with Soltropy Ltd |
Organisation | Soltropy Ltd, UK |
Country | United Kingdom |
Sector | Private |
PI Contribution | collaborate on the integration of solar thermal energy with air source heat pump |
Collaborator Contribution | provide solar thermal collectors |
Impact | still ongoing |
Start Year | 2023 |
Title | A HEAT PUMP SYSTEM |
Description | A heat pump system for controlling the internal temperature of a building. The system comprises a compressor, a first heat exchanger, an expansion device and a second heat exchanger which are fluidly coupled together by a flow of refrigerant to define a refrigerant circuit, and a thermal energy storage means which is thermally couplable to the refrigerant circuit to exchange thermal energy with the refrigerant. The heat pump system is configured to be operable in a normal heating mode and in a defrosting mode. In the normal heating mode, thermal energy is transferred from the second heat exchanger into the refrigerant and transferred from the refrigerant by the first heat exchanger to heat the building. In the defrosting mode thermal energy is transferred from the thermal energy storage means into the refrigerant and transferred from the refrigerant by the first heat exchanger to heat the building and by the second heat exchanger to defrost the second heat exchanger. The heat pump system comprises a switching assembly which is configured to switch between the normal heating and defrosting modes, and wherein the switching assembly is configured, when operating the heat pump system in the defrosting mode, to direct refrigerant exiting the first heat exchanger to flow through the second heat exchanger to cause residual heat in the refrigerant to defrost the second heat exchanger. |
IP Reference | US2023366599 |
Protection | Patent / Patent application |
Year Protection Granted | 2023 |
Licensed | No |
Impact | Currently working with industrial partners (Source Thermal, Isentra, Big Blue Energy, Soltropy) to conduct further R&D to bring it close towards commercialisation. |
Title | A HEAT PUMP SYSTEM |
Description | A heat pump system for controlling the internal temperature of a building. The system comprises a compressor, a first heat exchanger, an expansion device and a second heat exchanger which are fluidly coupled together by a flow of refrigerant to define a refrigerant circuit, and a thermal energy storage means which is thermally couplable to the refrigerant circuit to exchange thermal energy with the refrigerant. The heat pump system is configured to be operable in a normal heating mode and in a defrosting mode. In the normal heating mode, thermal energy is transferred from the second heat exchanger into the refrigerant and transferred from the refrigerant by the first heat exchanger to heat the building. In the defrosting mode thermal energy is transferred from the thermal energy storage means into the refrigerant and transferred from the refrigerant by the first heat exchanger to heat the building and by the second heat exchanger to defrost the second heat exchanger. The heat pump system comprises a switching assembly which is configured to switch between the normal heating and defrosting modes, and wherein the switching assembly is configured, when operating the heat pump system in the defrosting mode, to direct refrigerant exiting the first heat exchanger to flow through the second heat exchanger to cause residual heat in the refrigerant to defrost the second heat exchanger. |
IP Reference | WO2022069581 |
Protection | Patent / Patent application |
Year Protection Granted | 2022 |
Licensed | No |
Impact | A list of companies showed interests in the IP, and maintain dialogue with us. |
Description | 2nd article for Inside Housing |
Form Of Engagement Activity | A magazine, newsletter or online publication |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Media (as a channel to the public) |
Results and Impact | 25th Jan, 2024: "The 10,000-kilowatt elephant in the room." Description: An article suggesting the UK's historically-high electricity-to-gas price ratio is the key factor in understanding the nation's decarbonisation challenge. Impact: Inside Housing is the leading online housing publication has the largest readership across the UK. |
Year(s) Of Engagement Activity | 2024 |
URL | https://www.insidehousing.co.uk/comment/the-10000-kilowatt-elephant-in-the-room-84740 |
Description | Article for Inside Housing |
Form Of Engagement Activity | A magazine, newsletter or online publication |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Media (as a channel to the public) |
Results and Impact | Description: An article evaluating the latest Ofgem data on uptake of the UK Government's Boiler Upgrade Scheme. Impact: Inside Housing is the leading online housing publication has the largest readership across the UK. |
Year(s) Of Engagement Activity | 2023 |
URL | https://www.insidehousing.co.uk/comment/will-increasing-the-boiler-upgrade-scheme-boost-heat-pump-in... |
Description | Guest on the Science Show - Jambo Radio |
Form Of Engagement Activity | A broadcast e.g. TV/radio/film/podcast (other than news/press) |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Media (as a channel to the public) |
Results and Impact | Guest at The Science Show of Jambo Radio. Talk about heating technologies, heat pumps, heat decarbonisation. Challenges and Opportunities. |
Year(s) Of Engagement Activity | 2022 |
URL | https://www.youtube.com/watch?v=bmkfDM-H9nU |
Description | International Summer School Lecture - Shandong University, China |
Form Of Engagement Activity | A talk or presentation |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Postgraduate students |
Results and Impact | guest lecture entitled: Phase change based Thermal Energy Storage and applications |
Year(s) Of Engagement Activity | 2021 |
Description | Interview by Physics World of Institute of Physics |
Form Of Engagement Activity | A magazine, newsletter or online publication |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Media (as a channel to the public) |
Results and Impact | Interviewed by the journalist to talk about may invention of flexible heat pump and more widely heat decarbonisation. Home, green home: scientific solutions for cutting carbon and (maybe) saving money 13 Oct 2022 Margaret Harris |
Year(s) Of Engagement Activity | 2022 |
URL | https://physicsworld.com/a/home-green-home-scientific-solutions-for-cutting-carbon-and-maybe-saving-... |
Description | Interviewed by Knowable Magazine of Annual Reviews |
Form Of Engagement Activity | A magazine, newsletter or online publication |
Part Of Official Scheme? | No |
Geographic Reach | International |
Primary Audience | Media (as a channel to the public) |
Results and Impact | Interviewed by a journalist to talk about my invention of flexible heat pumps, and heat decarbonisation more widely. How heat pumps of the 1800s are becoming the technology of the future Innovative thinking has done away with problems that long dogged the electric devices - and both scientists and environmentalists are excited about the possibilities By Chris Baraniuk 01.11.2023 |
Year(s) Of Engagement Activity | 2022 |
URL | https://knowablemagazine.org/article/technology/2023/heat-pumps-becoming-technology-future |
Description | Presentation at the Supergen cross-hub workshop |
Form Of Engagement Activity | Participation in an activity, workshop or similar |
Part Of Official Scheme? | No |
Geographic Reach | National |
Primary Audience | Study participants or study members |
Results and Impact | 20 early career researchers attended to discuss the potential collaborations cross the three supergen research hubs. |
Year(s) Of Engagement Activity | 2023 |