📣 Help Shape the Future of UKRI's Gateway to Research (GtR)

We're improving UKRI's Gateway to Research and are seeking your input! If you would be interested in being interviewed about the improvements we're making and to have your say about how we can make GtR more user-friendly, impactful, and effective for the Research and Innovation community, please email gateway@ukri.org.

Secure Underground Caverns as an Energy Storage Solution (SUCcESS)

Lead Research Organisation: CARDIFF UNIVERSITY
Department Name: Sch of Earth and Environmental Sciences

Abstract

The SUCcESS project will deliver a roadmap outlining how BUL could be developed as a center for in-situ research on halite behaviour, which is relevant to support the development of solution-mined caverns required for gas storage to support the UK net-zero energy ambitions. The evidence base to support the roadmap development will be informed by stakeholders (industry, academia, regulatory) with a working interest in research associated with halite geology and cavern storage. This roadmap will be supplemented by a review of existing data and newly acquired data that characterizes the baseline geological conditions at the facility. This will give an excellent support resource from which new projects can build.
Renewable energies provide a clean alternative to power the UK but generation is often unmatched to demand. This, coupled with the need to ensure energy security, will necessitate an increase in grid-scale storage. Gas storage (compressed air (CAES) or hydrogen (CHGS)), working alongside renewable energies, provides near instantaneous electricity on the grid-scale, adding capacity and removing intermittency, and facilitating the use of renewables for baseload energy production. CAES and CHGS systems store compressed gas in large bodies using excess energy generated at off-peak times, releasing it as required to produce electricity. This has important implications for 1) the UK's commitment to decarbonise by reducing CO2 outputs from burning fossil fuels; 2) improving UK resource security by enabling UK renewables; 3) supporting the development of a viable UK-based hydrogen economy; 4) providing the opportunity to put the UK at the forefront of research and innovation in these emergent technologies. Halite has been successfully used for natural gas storage for decades, but existing facilities offer limited storage capacity compared to requirements for industrial power generation. Unlike natural gas storage, CAES and CHGS experience rapid withdrawal and refilling cycles with corresponding rapid pressure and temperature changes; this can lead to material cracking and failure. To generate an adequate knowledge base in fast-cycling cavern pressurisation for energy storage, an in-situ testing facility is the only realistic way to accomplish this. The three integrated activities of the SUCcESS project will provide Boulby Underground Laboratory (BUL) and STFC with the expertise to deliver infrastructure and capability in this research field:
A1: Stakeholder engagement- Host a series of structured and targeted stakeholder engagement workshops to create an experts' network and establish a knowledge base to develop and direct future applied geosciences and geo-energy research at BUL. Promote the facility to the wider geoscience community.
A2: Data discovery and In-situ pilot testing- Establish what geoscience data already exists that would be useful in the creation of a geo-energy research facility, highlighting the relevant knowledge already in the public domain and avoiding duplication of cost and effort. Augment the data discovery with a few specific and well-defined pilot tests to confirm the feasibility of BUL to host geo-energy research.
A3: Knowledge transfer- Engage with staff at BUL to aid the underground facility development. This will be required to enable the delivery of projects utilizing the subsurface and will take account of the complete geological system (volume of rock available to test, geochemistry, engineering geology, access to bedrock sections in walls, roof and floor).
The culmination of SUCcESS will be a roadmap detailing potential research themes that optimise the geological environment available at BUL for geo-energy research to align with the UK government's net-zero agenda. The stakeholder workshops in A1 will distill the important research themes that will frame the roadmap. Each research theme will comprise a series of potential projects that could be developed in BUL as the facility develops.

Publications

10 25 50
 
Description Participation on the Boulby Development Programme steering committee
Geographic Reach National 
Policy Influence Type Participation in a guidance/advisory committee
 
Description Cardiff University On-Campus Internship Studentship Summer 2024
Amount £3,000 (GBP)
Organisation Cardiff University 
Sector Academic/University
Country United Kingdom
Start 05/2024 
End 09/2024
 
Description Lecture given as part of Heriot-Watt Lyell Lecture Series on underground energy storage with a focus on Compressed Air Energy Storage 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Regional
Primary Audience Postgraduate students
Results and Impact Lecture given as part of Heriot-Watt Lyell Lecture Series on underground energy storage with a focus on Compressed Air Energy Storage
Year(s) Of Engagement Activity 2025
 
Description Poster presentation and lightening talk of internship student's summer research project findings on the SUCcESS project data to University staff and students 
Form Of Engagement Activity Participation in an activity, workshop or similar
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Undergraduate students
Results and Impact The summer internship student working with Cardiff University and BGS staff presented the results of their summer project working on the core data from the SUCcESS project as both a poster and lightening (5 minute) talk at a showcase event. The presentation audience was the cohort of other internship students (approx. 200 undergraduates) as well as university staff and students. The student who undertook the internship was so inspired by the project that they have now applied to study for an MSc degree in Geoenergy at the University of Edinburgh.
Year(s) Of Engagement Activity 2024
 
Description Undergraduate lecture and workshop on energy storage in salt caverns in the Cardiff University Business and Environment 4th year undergraduate module. 
Form Of Engagement Activity A talk or presentation
Part Of Official Scheme? No
Geographic Reach Local
Primary Audience Undergraduate students
Results and Impact The research project was used as a case study to give a lecture and practical workshop to 4th year undergraduate students on compressed air energy storage in salt caverns. The students learned about the potential for industrial application of the technology and it's compatibility with renewable electricity generation. The students also undertook an exercise to calculate gas storage volumes in idealised caverns, which sparked debate about the technology and its implementation.
Year(s) Of Engagement Activity 2025