📣 Help Shape the Future of UKRI's Gateway to Research (GtR)

We're improving UKRI's Gateway to Research and are seeking your input! If you would be interested in being interviewed about the improvements we're making and to have your say about how we can make GtR more user-friendly, impactful, and effective for the Research and Innovation community, please email gateway@ukri.org.

Novel molecular photoswitches for use in chemical biology

Lead Research Organisation: Imperial College London
Department Name: Chemistry

Abstract

Photoswitchable compounds, which can be reversibly switched between two isomers by light, continue to attract significant attention for a wide array of applications that capitalise on the high temporal and spatial precision of using light as a stimulus. The recently established field of photopharmacology uses photoswitchable ligands that are selective for a specific cellular target, such as a receptor or an enzyme, and are employed as therapeutic entities. These ligands undergo a change in shape, flexibility, or electronic properties upon irradiation with light that leads to a change in the affinity for their cellular target; therefore, they exhibit a light-dependent therapeutic activity.
Azoheteroarenes represent a relatively new but understudied type of photoswitch, where one or both of the aryl rings from the conventional azobenzene class has been replaced with a five-membered heteroaromatic ring. Within this class, our group recently discovered the arylazopyrazoles, which offer quantitative photoswitching and high thermal stability of the Z isomer (half-lives of up to about 1000 days). We have developed excellent understanding of the structure-property relationships for a wide array of comparable azoheteroaryl photoswitches and are now placed to explore these state-of-the-art systems for photopharmacology applications. This proposal will seek to develop photopharmacological agents and improved designs for biological application. A range of targets will be explored, with a particular focus on methyltransferases.

Strategic Themes: Healthcare Technologies; Physical Sciences
Research Areas: Analytical science; Physical Sciences: Chemical Biology and Biological Chemistry

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/R513052/1 30/09/2018 29/09/2023
2276479 Studentship EP/R513052/1 30/09/2019 30/03/2023 Magdalena Odaybat