📣 Help Shape the Future of UKRI's Gateway to Research (GtR)

We're improving UKRI's Gateway to Research and are seeking your input! If you would be interested in being interviewed about the improvements we're making and to have your say about how we can make GtR more user-friendly, impactful, and effective for the Research and Innovation community, please email gateway@ukri.org.

Modular Lie algebras and representation theory

Lead Research Organisation: University of Birmingham
Department Name: School of Mathematics

Abstract

The project concerns the theory of Lie algebras over fields of positive characteristic. Given the Lie algebra of a reductive algebraic group, we will consider questions about subalgebras containing a given nilpotent element. A fundamental question is to determine the subalgebras isomorphic to the special linear Lie algebra, and we plan to make progress understanding such subalgebras for restricted nilpotent elements. Further investigation will be made in to the smallest simple restricted subalgebra containing a nonrestricted nilpotent element. Subsequently, we plan to make progress in understanding all semisimple subalgebras containing a nilpotent elements in large orbits.

The methods will involve the representation theory of modular Lie algebras and cohomology of representations. In the case of groups of classical type, the natural representation and the theory of Jordan normal form will be employed, whereas computational methods may be used for the case of groups of exceptional type.

EPSRC subject area: Algebra

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/N509590/1 30/09/2016 29/09/2021
2281585 Studentship EP/N509590/1 29/09/2019 29/03/2023 Rachel Pengelly
EP/R513167/1 30/09/2018 29/09/2023
2281585 Studentship EP/R513167/1 29/09/2019 29/03/2023 Rachel Pengelly