📣 Help Shape the Future of UKRI's Gateway to Research (GtR)

We're improving UKRI's Gateway to Research and are seeking your input! If you would be interested in being interviewed about the improvements we're making and to have your say about how we can make GtR more user-friendly, impactful, and effective for the Research and Innovation community, please email gateway@ukri.org.

Investigating the potential of the EAT-2 receptor in crop protection

Lead Research Organisation: University of Southampton
Department Name: Sch of Biological Sciences

Abstract

Chemicals acting on neuromuscular transmission that control insects and nematode movement have provided successful pest management. An important criterion in ongoing development of this approach is selective toxicity
This allows treatments to act as potent pest control while having limited deleterious effect on non-harmful organisms. Conventionally, this is addressed by defining receptor classes selectively found between phyla and species. We have recently established a tissue selective sensitivity in the cholinergic transmission that pharmacologically discriminates between locomotion and feeding in nematodes. This difference is due to the distinct nature of the major acetylcholine receptors underpinning cholinergic transmission at these neuromuscular junctions. Pharyngeal transmission is dependent on an under investigated excitatory nicotinic acetylcholine receptor called EAT-2. EAT-2 is unique amongst nicotinic receptors in lacking the signature vicinal cysteine in the highly evolutionary conserved agonist binding site. It was previously assumed that this vicinal cysteine was essential for acetylcholine receptor activation of receptors. This highlights that nicotinic receptors can present a distinct pharmacophore to provide a route to selective anthelmintic chemicals. Importantly, the prototype EAT-2 controls feeding in the model organism C. elegans and is found in other nematodes including the plant parasitic nematodes. The proposal will seek to identify selective pharmacology of EAT-2 . The student will probe their functional role in key plant parasitic nematodes and address if this under investigated determinant of the neuromuscular function can act as credible target for the chemical mitigation of nematode pests.

People

ORCID iD

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
BB/T008768/1 30/09/2020 29/09/2028
2597113 Studentship BB/T008768/1 30/09/2021 29/09/2025