AWAKE-Run 2
Lead Research Organisation:
University of Manchester
Department Name: Engineering and Physical Sciences
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Planned Impact
This project is naturally a multi-disciplinary pursuit involving accelerator, plasma and particle physicists as well as engineers and technical staff. If AWAKE continues its success, this method of acceleration could provide a new cost-effective route to TeV-scale colliders either of reduced length or increased energy as well as particle physics experiments requiring electrons beams of 10s of GeV. Several possible experiments have been identified which could make use of electron bunches with electrons of order 50 GeV, such as a fixed-target experiment to search for dark photons, measurements of strong-field QED through electron-laser collisions and a possible electron-proton collider.
This UK proposal is for a significant development and is wide-ranging in scope, with some equipment to be purchased from UK-based companies which could increase significantly in the future should this form of technology become a real-world solution. As we in the UK are a significant fraction of the AWAKE collaboration from the start, should the final goal be realized, there is potential for economic stimulus to the UK which building a large-scale research facility brings. This will involve the potential for large industrial contracts, training for students and other staff and knowledge exchange between academic institutes and industry arising from the R&D and the method of plasma wakefield acceleration.
The final aim of this project is to develop an accelerator technology to be used for investigation of fundamental particles and forces, however, the principle of plasma wakefield acceleration could revolutionise accelerators in general. The accelerating gradients achieved are up to three orders of magnitude higher than current techniques allowing a corresponding reduction in the size (and possibly cost) of future accelerators. This could then benefit any branch of science, health or industry which uses particle accelerators. An example is for future free electron laser facilities which could benefit significantly from this technique in which the acceleration of electrons takes place using a much shorter accelerating structure.
Diagnostic techniques developed here could be of benefit to many plasma wakefield experiments with different goals or applications. Therefore the work done here could benefit accelerators planned for other industries using the technique of plasma wakefield acceleration.
Finally, the physics behind the accelerator R&D and the final goal of the next energy-frontier collider will excite future students and captivate the public in much the same way as the Large Hadron Collider has. Having the UK as part of such cutting-edge R&D in order to be leaders of future experiments on the nature of the physical world is essential and beneficial for society. Any economic impact, as mentioned above, can only be achieved through being a strong partner. And the societal benefit of encouraging students to study physics and improving the general public's knowledge of science can best be achieved if we are part of these and future pursuits.
This UK proposal is for a significant development and is wide-ranging in scope, with some equipment to be purchased from UK-based companies which could increase significantly in the future should this form of technology become a real-world solution. As we in the UK are a significant fraction of the AWAKE collaboration from the start, should the final goal be realized, there is potential for economic stimulus to the UK which building a large-scale research facility brings. This will involve the potential for large industrial contracts, training for students and other staff and knowledge exchange between academic institutes and industry arising from the R&D and the method of plasma wakefield acceleration.
The final aim of this project is to develop an accelerator technology to be used for investigation of fundamental particles and forces, however, the principle of plasma wakefield acceleration could revolutionise accelerators in general. The accelerating gradients achieved are up to three orders of magnitude higher than current techniques allowing a corresponding reduction in the size (and possibly cost) of future accelerators. This could then benefit any branch of science, health or industry which uses particle accelerators. An example is for future free electron laser facilities which could benefit significantly from this technique in which the acceleration of electrons takes place using a much shorter accelerating structure.
Diagnostic techniques developed here could be of benefit to many plasma wakefield experiments with different goals or applications. Therefore the work done here could benefit accelerators planned for other industries using the technique of plasma wakefield acceleration.
Finally, the physics behind the accelerator R&D and the final goal of the next energy-frontier collider will excite future students and captivate the public in much the same way as the Large Hadron Collider has. Having the UK as part of such cutting-edge R&D in order to be leaders of future experiments on the nature of the physical world is essential and beneficial for society. Any economic impact, as mentioned above, can only be achieved through being a strong partner. And the societal benefit of encouraging students to study physics and improving the general public's knowledge of science can best be achieved if we are part of these and future pursuits.
Organisations
People |
ORCID iD |
| Guoxing Xia (Principal Investigator) |
Publications
Williamson B
(2020)
Betatron radiation diagnostics for AWAKE Run 2
in Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Gorn A
(2020)
Proton beam defocusing in AWAKE: comparison of simulations and measurements
in Plasma Physics and Controlled Fusion
Assmann R
(2020)
EuPRAXIA Conceptual Design Report
in The European Physical Journal Special Topics
Turner M
(2020)
Experimental study of wakefields driven by a self-modulating proton bunch in plasma
in Physical Review Accelerators and Beams
Braunmüller F
(2020)
Proton Bunch Self-Modulation in Plasma with Density Gradient.
in Physical review letters
Chappell J
(2021)
Experimental study of extended timescale dynamics of a plasma wakefield driven by a self-modulated proton bunch
in Physical Review Accelerators and Beams
Batsch F
(2021)
Transition between Instability and Seeded Self-Modulation of a Relativistic Particle Bunch in Plasma
in Physical Review Letters
Morales Guzmán P
(2021)
Simulation and experimental study of proton bunch self-modulation in plasma with linear density gradients
in Physical Review Accelerators and Beams
| Description | AWAKE experiment is the first and the only proton-driven plasma wakefield acceleration in the world. The idea is to use high energy proton bunch to drive a plasma wakefield and accelerate a bunch of electrons to the energy frontier in a single plasma acceleration stage. AWAKE Run 2 (2021-) explores the details of long proton bunch and plasma interactions, with the aim for achieving high quality electron beam acceleration. From 2020 to 2023, a series of experiments have been performed to study the self modulation instability and seed self-modulation process. The experiments were very successful and we have gain a deep understanding of these important processes which are critical for the future AWAKE programme and the first particle physics application. |
| Exploitation Route | The theoretical understanding and the simulation tools developed at AWAKE project will find many applications in other relevant research such as astrophysics and nuclear fusion research. The beam diagnostics, plasma source technology, plasma diagnostics etc. can be used by wider community. |
| Sectors | Education Energy |
| URL | https://twiki.cern.ch/twiki/bin/view/AWAKE/AwakePublic |
| Description | Outreach talk given at Withington Girls' School (WGS) |
| Form Of Engagement Activity | A talk or presentation |
| Part Of Official Scheme? | No |
| Geographic Reach | Local |
| Primary Audience | Schools |
| Results and Impact | I was invited to give a PhilSoc Lecture (on the frontiers of particle accelerators including AWAKE) at Withington Girls' School on 11th February 2022, the lecture has attracted some 50+ 6th form, year 12-13 students and local people. The aim of this lecture is to inspire girls to take STEM as their future careers. |
| Year(s) Of Engagement Activity | 2022 |