Donor Design for Maximum Mobility TCOs
Lead Research Organisation:
University of Liverpool
Department Name: Physics
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Organisations
Publications
Jones LAH
(2022)
Band Alignments, Electronic Structure, and Core-Level Spectra of Bulk Molybdenum Dichalcogenides (MoS2, MoSe2, and MoTe2).
in The journal of physical chemistry. C, Nanomaterials and interfaces
Jones L
(2020)
Sn 5 s 2 lone pairs and the electronic structure of tin sulphides: A photoreflectance, high-energy photoemission, and theoretical investigation
in Physical Review Materials
Jack Swallow E
(2018)
A hard x-ray photoemission study of transparent conducting fluorine-doped tin dioxide
Hobson T
(2022)
P-type conductivity in Sn-doped Sb 2 Se 3
in Journal of Physics: Energy
Featherstone T
(2018)
Transparent Ta doped SnO2 films deposited by RF co-sputtering
Don C
(2020)
Sb 5s 2 lone pairs and band alignment of Sb 2 Se 3 : a photoemission and density functional theory study
in Journal of Materials Chemistry C
Cao Z
(2019)
Influence of annealing on the electrical characteristic of GaSbBi Schottky diodes
in Journal of Applied Physics
Birkett M
(2017)
Atypically small temperature-dependence of the direct band gap in the metastable semiconductor copper nitride Cu 3 N
in Physical Review B
Birkett M
(2018)
Band gap temperature-dependence and exciton-like state in copper antimony sulphide, CuSbS2
in APL Materials
| Description | We found what limits the conductivity of a transparent conducting oxide (TCO) material, fluorine-doped tin dioxide. TCOs are used for flat panel displays, low emissivity window coatings and thin film solar cells. We found a way to make transparent conducting oxides more conducting and more transparent, particularly in the infrared part of the spectrum. This will enable better solar cells to be made. It also has applications in displays, where the same performance will be possible using less indium, a scarce and expensive element. |
| Exploitation Route | The results should enable more conducting films to made in the future with different dopants from fluorine. Transparent conducting oxide films with improved infrared transparency will now be possible using our novel dopants and insights. |
| Sectors | Aerospace Defence and Marine Construction Electronics Energy |
| URL | https://news.liverpool.ac.uk/2017/11/27/discovery-points-the-way-to-better-and-cheaper-transparent-conductors/;https://news.liverpool.ac.uk/2019/09/17/new-research-gives-breakthrough-for-transparent-conductors/ |
| Title | CSD 1971854: Experimental Crystal Structure Determination |
| Description | Related Article: Philip A. E. Murgatroyd, Matthew J. Smiles, Christopher N. Savory, Thomas P. Shalvey, Jack E. N. Swallow, Nicole Fleck, Craig M. Robertson, Frank Jäckel, Jonathan Alaria, Jonathan D. Major, David O. Scanlon, Tim D. Veal|2020|Chem.Mater.|32|3245|doi:10.1021/acs.chemmater.0c00453 |
| Type Of Material | Database/Collection of data |
| Year Produced | 2020 |
| Provided To Others? | Yes |
| URL | http://www.ccdc.cam.ac.uk/services/structure_request?id=doi:10.25505/fiz.icsd.cc245w6f&sid=DataCite |
