Transiting planets with the CoRoT space mission
Lead Research Organisation:
UNIVERSITY OF EXETER
Department Name: Physics
Abstract
In this Rolling Grant application, we describe an interdisciplinary programme of observational and theoretical research in extrasolar planets, to be conducted at the University of Exeter, through a new collaboration between the Astrophysics Group in the School of Physics and the Centre for Geophysical and Astrophysical Fluid Dynamics (CGAFD) in the School of Engineering, Computing and Mathematics (SECaM). The research programme combines state-of-the-art observations and theoretical calculations to detect, determine the properties of, and model the formation and evolution of extrasolar planets. We will perform three-dimensional self-gravitating radiation hydrodynamical simulations of gas accretion by a protoplanet core to form giant planets to produce more accurate models of young gas giant planets. We will directly image gas giant planets around young nearby stars using adaptive optics on the VLT and the Gemini Planet Imager and use these observations to test the models. We will undertake space-based observations of transiting planets using HST and Spitzer to understand the chemistry and dynamics of the atmospheres of giant planets that are very close to their stars and model these atmospheres using convective three-dimensional simulations. Finally, we will analyse the data from CoRoT, the first space-based transiting planet search mission, to detect and characterise planets of Neptune-mass and below and the systems they are part of, as well as search for light reflected by giant planets.
Organisations
People |
ORCID iD |
| Suzanne Aigrain (Principal Investigator) |
Publications
Gaulme P
(2010)
Possible detection of phase changes from the non-transiting planet HD 46375b by CoRoT
in Astronomy and Astrophysics
Gibson N
(2012)
Probing the haze in the atmosphere of HD 189733b with Hubble Space Telescope/WFC3 transmission spectroscopy WFC3 transmission spectroscopy of HD 189733b
in Monthly Notices of the Royal Astronomical Society
Aigrain Suzanne
(2012)
Probing the Physics of Planets and Stars with Transit Data
in IAU Symposium
Pont F
(2011)
Reassessing the radial-velocity evidence for planets around CoRoT-7 CoRoT-7 planet (s)
in Monthly Notices of the Royal Astronomical Society
Barros S
(2014)
Revisiting the transits of CoRoT-7b at a lower activity level
in Astronomy & Astrophysics
Fressin F
(2012)
SPITZER INFRARED OBSERVATIONS AND INDEPENDENT VALIDATION OF THE TRANSITING SUPER-EARTH CoRoT-7 b
in The Astrophysical Journal
Aigrain S.
(2013)
The CoRoT transit candidate catalog
Evans T
(2013)
THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE /SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS
in The Astrophysical Journal
Gibson N
(2013)
The optical transmission spectrum of the hot Jupiter HAT-P-32b: clouds explain the absence of broad spectral features?
in Monthly Notices of the Royal Astronomical Society
Pont F
(2013)
The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations
in Monthly Notices of the Royal Astronomical Society
Related Projects
| Project Reference | Relationship | Related To | Start | End | Award Value |
|---|---|---|---|---|---|
| ST/G002266/1 | 30/09/2009 | 31/01/2010 | £272,257 | ||
| ST/G002266/2 | Transfer | ST/G002266/1 | 18/01/2010 | 30/03/2012 | £242,685 |
| Description | This grant funded me and a PDRA for three years to work on the detection and characterisation of transiting planets, mainly using data from the CoRoT space mission, the Hubble Space Telescope and the Gemini telescopes. One of the main outcomes was the development of novel methods to model instrumental systematic effects and / or stellar variability using a technique known as Gaussian Process regression, which we introduced to the exoplanet community, and where it is now becoming widely used. |
| Exploitation Route | The novel light curve analysis methods we developed are becoming widely used in the community. This work also contributed to establishing the prevalence of clouds in the atmospheres of numerous hot Jupiter planets, which is prompting renewed interest in modelling and understanding clouds in hot Jupiters and brown dwarfs. |
| Sectors | Digital/Communication/Information Technologies (including Software) Education |
| Description | The main impact of this research beyond its immediate subject matter is educational: we were the first to apply Gaussian Process regression to exoplanet time-series data, and this has had a significant impact in the way in which researchers and students now approach the analysis of such datasets, including in other areas of astronomy that involve time-series or correlated datasets (e.g pulsar science and CMB cosmology) |
| First Year Of Impact | 2012 |
| Sector | Digital/Communication/Information Technologies (including Software),Education |