Astrophysics and Cosmology Research at the Jodrell Bank Centre for Astrophysics 2023-2026
Lead Research Organisation:
University of Manchester
Department Name: Physics and Astronomy
Abstract
This grant supports the research of the Jodrell Bank Centre for Astrophysics at the University of Manchester. Our research is a divided into 3 groups. There are too many specific proposals to describe in detail, do below we have given a brief layman's explanation of the work being carried out by the three groups.
Cosmology: This is the study of the Universe as a whole. The main aim is to understand the processes by which the large scale feature of the Universe formed and to constrain the various different kinds of matter that existed within it. These include dark matter and dark energy which are thought to constitute more than 95% of the total. We do this by comparison to observations of weak and strong gravitational lensing which is the distortion of light predicted to be caused by massive objects in Einstein' Theory of General Relativity, the cosmic microwave background which is the faint emission of radiation created at the time when protons and electrons come together to form hydrogen and the emission given off by neutral hydrogen atoms in galaxies. The research we propose here involves both theory and observation as well as the development of the technology necessary to make the observations possible.
Pulsars and Time Domain Astrophysics: The focus of this group is astrophysical signatures that are changing with time - signals which go on and off, often with some kind of regularity. These include Pulsars which are a non-standard star type, known as a neutron star, which is a dead star supported by the quantum pressure of neutrons. The radio emission from these objects pulses on an off with extraordinary regularity allowing them to acts cosmic clocks. The constantly measuring these clocks as the neutron stars spin and move through space, often impacted on by a companion star, allows the most precise constraints on the nature of gravity outside the solar system. Other phenomena studied by this group include Nova explosions, other variable stars, and variability induced by the lensing effects of one star passing in front of another, called microlensing.
Sun, Stars and Galaxies: The researchers in this group study a wide range of astrophysical processes that are reasonable for the formation and evolution of the objects in the name of the group. Specific key areas that the group is interested in are the formation of stars much larger than the Sun and the subsequent evolution, the properties of the so-called interstellar medium (ISM) which comprises molecules not bound to stars and the magnetic fields that permeate space.
Cosmology: This is the study of the Universe as a whole. The main aim is to understand the processes by which the large scale feature of the Universe formed and to constrain the various different kinds of matter that existed within it. These include dark matter and dark energy which are thought to constitute more than 95% of the total. We do this by comparison to observations of weak and strong gravitational lensing which is the distortion of light predicted to be caused by massive objects in Einstein' Theory of General Relativity, the cosmic microwave background which is the faint emission of radiation created at the time when protons and electrons come together to form hydrogen and the emission given off by neutral hydrogen atoms in galaxies. The research we propose here involves both theory and observation as well as the development of the technology necessary to make the observations possible.
Pulsars and Time Domain Astrophysics: The focus of this group is astrophysical signatures that are changing with time - signals which go on and off, often with some kind of regularity. These include Pulsars which are a non-standard star type, known as a neutron star, which is a dead star supported by the quantum pressure of neutrons. The radio emission from these objects pulses on an off with extraordinary regularity allowing them to acts cosmic clocks. The constantly measuring these clocks as the neutron stars spin and move through space, often impacted on by a companion star, allows the most precise constraints on the nature of gravity outside the solar system. Other phenomena studied by this group include Nova explosions, other variable stars, and variability induced by the lensing effects of one star passing in front of another, called microlensing.
Sun, Stars and Galaxies: The researchers in this group study a wide range of astrophysical processes that are reasonable for the formation and evolution of the objects in the name of the group. Specific key areas that the group is interested in are the formation of stars much larger than the Sun and the subsequent evolution, the properties of the so-called interstellar medium (ISM) which comprises molecules not bound to stars and the magnetic fields that permeate space.
Organisations
Publications
Falxa M
(2024)
Modeling nonstationary noise in pulsar timing array data analysis
in Physical Review D
Aalto S
(2024)
OH megamaser emission in the outflow of the luminous infrared galaxy Zw049.057
in Proceedings of the International Astronomical Union
Trussler J
(2024)
EPOCHS IX. When cosmic dawn breaks: evidence for evolved stellar populations in 7 < z < 12 galaxies from PEARLS GTO and public NIRCam imaging
in Monthly Notices of the Royal Astronomical Society
Jackson N
(2024)
Radio imaging of gravitationally lensed radio-quiet quasars
in Monthly Notices of the Royal Astronomical Society
Burgay M
(2024)
Radio and gamma-ray timing of TRAPUM L -band Fermi pulsar survey discoveries
in Astronomy & Astrophysics
Van Der Wateren E
(2024)
PSR J0210+5845: Ultra-wide binary pulsar with a B6 V main sequence star companion
in Astronomy & Astrophysics
Turner J
(2024)
TRAPUM search for pulsars in supernova remnants and pulsar wind nebulae - I. Survey description and initial discoveries
in Monthly Notices of the Royal Astronomical Society
Garsden H
(2024)
A demonstration of the effect of fringe-rate filtering in the hydrogen epoch of reionization array delay power spectrum pipeline
in Monthly Notices of the Royal Astronomical Society
Keith M
(2024)
The Thousand-Pulsar-Array programme on MeerKAT - XIII. Timing, flux density, rotation measure, and dispersion measure time series of 597 pulsars
in Monthly Notices of the Royal Astronomical Society
Tohill C
(2024)
A Robust Study of High-redshift Galaxies: Unsupervised Machine Learning for Characterizing Morphology with JWST up to z ~ 8
in The Astrophysical Journal
