📣 Help Shape the Future of UKRI's Gateway to Research (GtR)

We're improving UKRI's Gateway to Research and are seeking your input! If you would be interested in being interviewed about the improvements we're making and to have your say about how we can make GtR more user-friendly, impactful, and effective for the Research and Innovation community, please email gateway@ukri.org.

Description of the project. Efficient Chip-Integrated Photon Counting Detectors

Lead Research Organisation: University of Bristol
Department Name: Physics

Abstract

We propose a new type of photodector based on multiplexed chip-integrated evanescently coupled superconducting films. This approach can achieve single-photon resolution up to hundreds of photons- a hundred-fold improvement over current devices. Our team developed evanescently coupled photon counting detectors in an EPSRC-funded collaboration with the groups of Peter Smith (ORC, Southampton) and Sae Woo Nam (NIST Boulder).
The concept is that silica-on-silicon waveguides are fabricated sufficiently close to the chip surface so that thin metal films deposited on the surface absorb the evanescent field of the guided mode. Here, we leverage a unique aspect of this detector design: light that is not absorbed by a detector remains in the guided mode. The evanescent coupling therefore enables an efficient, highly scalable scheme that chains together a series of many detection elements. We will develop devices with two types of elements that provide complementary performance in timing and number resolution: transition edge sensors (TESs) and superconducting nanowire single-photon detectors (SNSPDs). In isolation, these elements are saturated with one (SNSPD) or a few (TES) photons. Effective multiplexing avoids element saturation while detecting many excitations in sum.
This project aims to deliver the first multiplexed detector with single-photon resolution extending over a hundred photons. The work will include device modelling, characterisation by quantum detector tomography, and a theoretical study on the limits of multiplexed detectors. The student will also work alongside NQIT photonics researchers to progress application in photonic quantum simulators and an entanglement-based quantum random number generator (QRNG)

People

ORCID iD

Jacob Bulmer (Student)

Publications

10 25 50

Studentship Projects

Project Reference Relationship Related To Start End Student Name
EP/N509711/1 30/09/2016 29/09/2021
1979571 Studentship EP/N509711/1 19/01/2019 27/04/2022 Jacob Bulmer
EP/R513295/1 30/09/2018 29/09/2023
1979571 Studentship EP/R513295/1 19/01/2019 27/04/2022 Jacob Bulmer