📣 Help Shape the Future of UKRI's Gateway to Research (GtR)

We're improving UKRI's Gateway to Research and are seeking your input! If you would be interested in being interviewed about the improvements we're making and to have your say about how we can make GtR more user-friendly, impactful, and effective for the Research and Innovation community, please email gateway@ukri.org.

Genetic improvement of wheat to reduce the potential for acrylamide formation during processing

Lead Research Organisation: John Innes Centre
Department Name: UNLISTED

Abstract

Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

Technical Summary

The formation of the chemical contaminant, acrylamide, during high-temperature cooking and processing of wheat, rye, potato and other mainly plant-derived raw materials was reported in 2002, and the presence of acrylamide in foods is now recognized as a difficult problem for the agricultural and food industries. Acrylamide causes cancer in laboratory animals and is therefore considered to be probably cancer-causing in humans. It also affects the nervous system and reproduction. Cereals, of which wheat is the most important, generate half of the acrylamide in the European diet, with biscuits, snacks and breakfast cereals being of particular concern. This application is being funded through the BBSRC’s stand-alone LINK scheme. The project will use state-of-the-art techniques for analysing amino acid concentrations in wheat flour, exploit the genetic resources in wheat that have been developed at Rothamsted and the John Innes Centre, including mapping populations, wheat genetic modification (as a research tool) and high-throughput screening of mutant populations, and utilise the latest DNA sequencing techniques to study differences in gene expression between high and low asparagine genotypes. The impact of reductions in acrylamide-forming potential of grain on performance in industrial processes will be assessed by food industry partners.

Planned Impact

unavailable

Publications

10 25 50