India-UK Advanced Technology Centre (IU-ATC) of Excellence in Next Generation Networks Systems and Services
Lead Research Organisation:
University of Southampton
Department Name: Electronics and Computer Science
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Organisations
- University of Southampton (Lead Research Organisation)
- Sasken Communication Technologies Ltd (Project Partner)
- BT plc (Project Partner)
- Wipro Technologies (Project Partner)
- InfoSys Technologies Ltd (Project Partner)
- Tejas Networks Ltd (Project Partner)
- MIDAS Communications Technologies India (Project Partner)
People |
ORCID iD |
| Lajos Hanzo (Principal Investigator) |
Publications
Hou X
(2022)
Edge Intelligence for Mission-Critical 6G Services in Space-Air-Ground Integrated Networks
in IEEE Network
Li S
(2022)
Faster-Than-Nyquist Asynchronous NOMA Outperforms Synchronous NOMA
in IEEE Journal on Selected Areas in Communications
Ragheb M
(2022)
On the Physical Layer Security of Untrusted Millimeter Wave Relaying Networks: A Stochastic Geometry Approach
in IEEE Transactions on Information Forensics and Security
Cao Y
(2022)
The Evolution of Quantum Key Distribution Networks: On the Road to the Qinternet
in IEEE Communications Surveys & Tutorials
Ma Y
(2022)
Generalized Approximate Message Passing Equalization for Multi-Carrier Faster-Than-Nyquist Signaling
in IEEE Transactions on Vehicular Technology
Xu C
(2022)
Reconfigurable Intelligent Surface Assisted Multi-Carrier Wireless Systems for Doubly Selective High-Mobility Ricean Channels
in IEEE Transactions on Vehicular Technology
Liu D
(2022)
Deep-Learning-Aided Packet Routing in Aeronautical Ad Hoc Networks Relying on Real Flight Data: From Single-Objective to Near-Pareto Multiobjective Optimization
in IEEE Internet of Things Journal
Wang K
(2022)
Joint Task Offloading and Caching for Massive MIMO-Aided Multi-Tier Computing Networks
in IEEE Transactions on Communications
Yu H
(2022)
Maximizing the Geometric Mean of User-Rates to Improve Rate-Fairness: Proper vs. Improper Gaussian Signaling
in IEEE Transactions on Wireless Communications
Liu K
(2022)
Compact User-Specific Reconfigurable Intelligent Surfaces for Uplink Transmission
in IEEE Transactions on Communications
An J
(2022)
Low-Complexity Improved-Rate Generalised Spatial Modulation: Bit-to-Symbol Mapping, Detection and Performance Analysis
in IEEE Transactions on Vehicular Technology
Srivastava S
(2022)
Bayesian Learning Aided Simultaneous Row and Group Sparse Channel Estimation in Orthogonal Time Frequency Space Modulated MIMO Systems
in IEEE Transactions on Communications
An J
(2022)
Low-Complexity Channel Estimation and Passive Beamforming for RIS-Assisted MIMO Systems Relying on Discrete Phase Shifts
in IEEE Transactions on Communications
Shi Q
(2022)
Low-Complexity Iterative Detection for Dual-Mode Index Modulation in Dispersive Nonlinear Satellite Channels
in IEEE Transactions on Communications
Wang J
(2022)
Unsourced Massive Random Access Scheme Exploiting Reed-Muller Sequences
in IEEE Transactions on Communications
Chandra D
(2022)
Direct Quantum Communications in the Presence of Realistic Noisy Entanglement
in IEEE Transactions on Communications
| Description | Powerful multi-carrier transceiver schemes were conceived, which relied on multiple-output, multiple-input (MIMO) arrangements for enhancing both the transmission integrity as well as the attainable throughput. These MIMO systems hence achieve an improved quality of experience for smart phones and tablet computers. |
| Exploitation Route | A large number of IEEE publications were conceived, but I only uploaded the journal papers. Our industrial partners substantially benefitted from the research and we were able to attract further funding as a consortium. |
| Sectors | Aerospace Defence and Marine Agriculture Food and Drink Creative Economy Digital/Communication/Information Technologies (including Software) Education Electronics Energy Environment Healthcare Leisure Activities including Sports Recreation and Tourism Transport |
| URL | httP://www-mobile.ecs.soton.ac.uk |
| Description | There were several Indian companies, who used the research results, such as CeWit for example, which is a spin-off company of the Indian Institute of Technology Madras in Chennai. They also conveyed the results to the 4G Long Term Evolution (LTE) standardization body. They also employed one of my students. In the UK side, British Telecomms was also part of the project and they have had a high-level representation in the consortium both through their Ipswich and their Abu Dhabi facility. This collaboration also led to another project with BT, which is related to improving the achievable transmission speed of copper-wire based WIFI systems across the UK. We are exploiting the hitherto unused part of the bandwidth above 50 MHz. |
| First Year Of Impact | 2015 |
| Sector | Aerospace, Defence and Marine,Agriculture, Food and Drink,Digital/Communication/Information Technologies (including Software),Education,Electronics,Energy,Transport |
| Impact Types | Cultural Societal Economic |
| Description | EPSRC |
| Amount | £250,000 (GBP) |
| Funding ID | EP/J016640/1 |
| Organisation | Engineering and Physical Sciences Research Council (EPSRC) |
| Sector | Public |
| Country | United Kingdom |
| Start | 01/2012 |
| End | 12/2014 |
| Description | European Union Framework 7 |
| Amount | £240,000 (GBP) |
| Funding ID | Concerto propject |
| Organisation | European Commission |
| Department | Seventh Framework Programme (FP7) |
| Sector | Public |
| Country | European Union (EU) |
| Start | 02/2012 |
| End | 12/2014 |
| Description | European Union Framework 7 |
| Amount | £240,000 (GBP) |
| Funding ID | Concerto propject |
| Organisation | European Commission |
| Department | Seventh Framework Programme (FP7) |
| Sector | Public |
| Country | European Union (EU) |
| Start | 02/2012 |
| End | 12/2014 |