DiRAC-2.5 - the pathway to DiRAC Phase 3
Lead Research Organisation:
Durham University
Department Name: Physics
Abstract
We request funding to relocate the Blue Wonder HPC cluster and associated storage, currently at the Hartree Centre at Daresbury, to Durham, together with installation and hardware maintenance costs. This move would enable DiRAC to expand the current DiRAC-2 Data centric service, managed by Durham, by a factor of two in both computing power and data storage capacity. The new service would be called the DiRAC-2.5 Data Centric service.
Planned Impact
DiRAC would seek to continue to engage with industry at various levels, from the
provision of computing cycles for industrial applications to the
exchange of technical knowledge and shared training programmes. The
facility will serve to train young scientists in the most advanced
techniques for supercomputing. These have extensive applications beyond
academia, for example in industry and finance. Finally, output from Dirac-based
projects will be used for science outreach activities.
provision of computing cycles for industrial applications to the
exchange of technical knowledge and shared training programmes. The
facility will serve to train young scientists in the most advanced
techniques for supercomputing. These have extensive applications beyond
academia, for example in industry and finance. Finally, output from Dirac-based
projects will be used for science outreach activities.
Organisations
Publications
Lovell M
(2021)
The spatial distribution of Milky Way satellites, gaps in streams, and the nature of dark matter
in Monthly Notices of the Royal Astronomical Society
Ganeshaiah Veena P
(2021)
Cosmic Ballet III: Halo spin evolution in the cosmic web
in Monthly Notices of the Royal Astronomical Society
Mitchell M
(2021)
The impact of modified gravity on the Sunyaev-Zeldovich effect
in Monthly Notices of the Royal Astronomical Society
Stafford S
(2021)
Testing extensions to ?CDM on small scales with forthcoming cosmic shear surveys
in Monthly Notices of the Royal Astronomical Society
Santos-Santos I
(2021)
Magellanic satellites in ?CDM cosmological hydrodynamical simulations of the Local Group
in Monthly Notices of the Royal Astronomical Society
Font A
(2021)
Can cosmological simulations capture the diverse satellite populations of observed Milky Way analogues?
in Monthly Notices of the Royal Astronomical Society
Bertulani C
(2021)
Examination of the sensitivity of quasifree reactions to details of the bound-state overlap functions
in Physical Review C
Richings A
(2021)
Unravelling the physics of multiphase AGN winds through emission line tracers
in Monthly Notices of the Royal Astronomical Society
Bahé Y
(2021)
Strongly lensed cluster substructures are not in tension with ?CDM
in Monthly Notices of the Royal Astronomical Society
Elliott E
(2021)
Efficient exploration and calibration of a semi-analytical model of galaxy formation with deep learning
in Monthly Notices of the Royal Astronomical Society
Koudmani S
(2021)
A little FABLE: exploring AGN feedback in dwarf galaxies with cosmological simulations
in Monthly Notices of the Royal Astronomical Society
Barnes D
(2021)
Characterizing hydrostatic mass bias with mock-X
in Monthly Notices of the Royal Astronomical Society
Nixon C
(2021)
Partial, Zombie, and Full Tidal Disruption of Stars by Supermassive Black Holes
in The Astrophysical Journal
Borrow J
(2021)
Inconsistencies arising from the coupling of galaxy formation sub-grid models to pressure-smoothed particle hydrodynamics
in Monthly Notices of the Royal Astronomical Society
Acuto A
(2021)
The BAHAMAS project: evaluating the accuracy of the halo model in predicting the non-linear matter power spectrum
in Monthly Notices of the Royal Astronomical Society
Beckett A
(2021)
The relationship between gas and galaxies at z < 1 using the Q0107 quasar triplet
in Monthly Notices of the Royal Astronomical Society
Lovell C
(2021)
Reproducing submillimetre galaxy number counts with cosmological hydrodynamic simulations
in Monthly Notices of the Royal Astronomical Society
DeGraf C
(2021)
Morphological evolution of supermassive black hole merger hosts and multimessenger signatures
in Monthly Notices of the Royal Astronomical Society
Lovell M
(2021)
The spatial distribution of Milky Way satellites, gaps in streams, and the nature of dark matter
in Monthly Notices of the Royal Astronomical Society
Šoltinskí T
(2021)
The detectability of strong 21 centimetre forest absorbers from the diffuse intergalactic medium in late reionisation models
in Monthly Notices of the Royal Astronomical Society
| Description | See Dirac annual report https://dirac.ac.uk |
| Exploitation Route | See Dirac annual report https://dirac.ac.uk |
| Sectors | Digital/Communication/Information Technologies (including Software) Education |
| URL | https://dirac.ac.uk |
