Astronomy and Astrophysics at Edinburgh
Lead Research Organisation:
University of Edinburgh
Department Name: Sch of Physics and Astronomy
Abstract
An astonishing feature of modern astrophysical research is that we have in principle a chain of explanation that stretches from processes on cosmological scales of billions of light years, down to the creation of stars, planets around the stars and life on the planets. In a sense, this process is almost a closed loop: the early Universe was once of sub-nuclear scale, so that quantum mechanical uncertainty is bound to seed fluctuations in density, which eventually collapse under gravity to make astronomical structures. This is the same physics of the very small that governs the formation of the atoms out of which we are all made.
But unanswered questions abound at all stages of this process. Our theories of the early Universe and explanations of its current expansion rest on the concept that empty space can have weight: the so-called "dark energy". We need to study its properties and understand its origin. In so doing, we often assume that Einstein's relativity describes gravity correctly on all scales, but can we test this? If the standard theory is correct, dark matter is required, and we are driven to follow the processes by which it clumps, and by which the gas within these clumps evolves and eventually collapses to form stars and massive black holes. New large telescopes on the ground, together with observing platforms in space such as the Hubble and Spitzer Space Telescopes (and soon the James Webb Space Telescope), allow us to see this process in action and compare the observations with detailed computer simulations. Nearer to home, we can dissect galaxies such as our own Milky Way into individual stars, for the most detailed view of how they were assembled. And finally we can study how planets arise around these stars, both from new instruments that can detect the presence of "exo-planets" and by computer simulations of how they may be created within the discs of gas and dust left over from star formation. Ultimately, one can refine the search to planets potentially capable of supporting life, and ask how life might arise within these early planetary systems.
Research in astronomy at Edinburgh attacks all of these connected questions. Progress is rapid, driven by technological breakthroughs in observational facilities and computing power, and our understanding is evolving rapidly. Major progress, even if not final answers, can be expected within a few years. This is an exciting time for our understanding of the full history and structure of our Universe and our place within it.
But unanswered questions abound at all stages of this process. Our theories of the early Universe and explanations of its current expansion rest on the concept that empty space can have weight: the so-called "dark energy". We need to study its properties and understand its origin. In so doing, we often assume that Einstein's relativity describes gravity correctly on all scales, but can we test this? If the standard theory is correct, dark matter is required, and we are driven to follow the processes by which it clumps, and by which the gas within these clumps evolves and eventually collapses to form stars and massive black holes. New large telescopes on the ground, together with observing platforms in space such as the Hubble and Spitzer Space Telescopes (and soon the James Webb Space Telescope), allow us to see this process in action and compare the observations with detailed computer simulations. Nearer to home, we can dissect galaxies such as our own Milky Way into individual stars, for the most detailed view of how they were assembled. And finally we can study how planets arise around these stars, both from new instruments that can detect the presence of "exo-planets" and by computer simulations of how they may be created within the discs of gas and dust left over from star formation. Ultimately, one can refine the search to planets potentially capable of supporting life, and ask how life might arise within these early planetary systems.
Research in astronomy at Edinburgh attacks all of these connected questions. Progress is rapid, driven by technological breakthroughs in observational facilities and computing power, and our understanding is evolving rapidly. Major progress, even if not final answers, can be expected within a few years. This is an exciting time for our understanding of the full history and structure of our Universe and our place within it.
Planned Impact
Details of our Pathways to Impact are provided in the separate 2-page attachment.
Organisations
Publications
Bonavita M
(2020)
A new white dwarf companion around the ?µ star GJ 3346
in Monthly Notices of the Royal Astronomical Society
Bonavita M
(2022)
Results from The COPAINS Pilot Survey: Four new brown dwarfs and a high companion detection rate for accelerating stars
in Monthly Notices of the Royal Astronomical Society
Bonavita M
(2022)
New binaries from the SHINE survey
in Astronomy & Astrophysics
Bonnefoy M
(2018)
The GJ 504 system revisited Combining interferometric, radial velocity, and high contrast imaging data
in Astronomy & Astrophysics
Borrow J
(2020)
Cosmological baryon transfer in the simba simulations
in Monthly Notices of the Royal Astronomical Society
Borsato L
(2019)
HARPS-N radial velocities confirm the low densities of the Kepler-9 planets
in Monthly Notices of the Royal Astronomical Society
Bourne N
(2019)
The relationship between dust and [C i ] at z = 1 and beyond
in Monthly Notices of the Royal Astronomical Society
Bowler B
(2018)
Orbit and Dynamical Mass of the Late-T Dwarf GL 758 B*
in The Astronomical Journal
Bowler R
(2022)
The discovery of rest-frame UV colour gradients and a diversity of dust morphologies in bright z ? 7 Lyman-break galaxies
in Monthly Notices of the Royal Astronomical Society
Bowler R
(2018)
Obscured star formation in bright z ? 7 Lyman-break galaxies
in Monthly Notices of the Royal Astronomical Society
Breen P
(2021)
The kinematic richness of star clusters - II. Stability of spherical anisotropic models with rotation
in Monthly Notices of the Royal Astronomical Society
Brinkman C
(2023)
Kepler-102: Masses and Compositions for a Super-Earth and Sub-Neptune Orbiting an Active Star
in The Astronomical Journal
Broussard A
(2019)
Star Formation Stochasticity Measured from the Distribution of Burst Indicators
in The Astrophysical Journal
Brout D
(2022)
The Pantheon+ Analysis: Cosmological Constraints
in The Astrophysical Journal
Bruzzese S
(2020)
The initial mass function in the extended ultraviolet disc of M83
in Monthly Notices of the Royal Astronomical Society
Buitrago F
(2018)
Galaxy and Mass Assembly (GAMA): Accurate number densities and environments of massive ultra-compact galaxies at 0.02 < z < 0.3
in Astronomy & Astrophysics
Burger J
(2021)
Conservation of radial actions in time-dependent spherical potentials
in Monthly Notices of the Royal Astronomical Society
Cadman J
(2020)
Fragmentation favoured in discs around higher mass stars
in Monthly Notices of the Royal Astronomical Society
Cadman J
(2021)
AB Aurigae: possible evidence of planet formation through the gravitational instability
in Monthly Notices of the Royal Astronomical Society
Cadman J
(2020)
The observational impact of dust trapping in self-gravitating discs
in Monthly Notices of the Royal Astronomical Society
Cadman J
(2020)
Fragmentation favoured in discs around higher mass stars
in Monthly Notices of the Royal Astronomical Society
Cadman J
(2022)
Binary companions triggering fragmentation in self-gravitating discs
in Monthly Notices of the Royal Astronomical Society
Calistro Rivera G
(2021)
The multiwavelength properties of red QSOs: Evidence for dusty winds as the origin of QSO reddening
in Astronomy & Astrophysics
Callingham J
(2021)
The population of M dwarfs observed at low radio frequencies
| Title | HiZELS star-forming galaxies at z=0.8-3.3 |
| Description | VizieR online Data Catalogue associated with article published in journal Monthly Notices of the Royal Astronomical Society with title ' The dynamics and distribution of angular momentum in HiZELS star-forming galaxies at z=0.8-3.3.' (bibcode: 2019MNRAS.486..175G) |
| Type Of Material | Database/Collection of data |
| Year Produced | 2022 |
| Provided To Others? | Yes |
| URL | https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/486/175 |
| Title | LOFAR LBA Sky Survey. I. |
| Description | VizieR online Data Catalogue associated with article published in journal Astronomy & Astrophysics with title 'The LOFAR LBA Sky Survey. I. Survey description and preliminary data release.' (bibcode: 2021A&A...648A.104D) |
| Type Of Material | Database/Collection of data |
| Year Produced | 2021 |
| Provided To Others? | Yes |
| URL | https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/648/A104 |
| Title | LOFAR Two-metre Sky Survey (LoTSS) DR2 |
| Description | VizieR online Data Catalogue associated with article published in journal Astronomy & Astrophysics with title 'The LOFAR Two-metre Sky Survey (LoTSS). V. Second data release.' (bibcode: 2022A&A...659A...1S) |
| Type Of Material | Database/Collection of data |
| Year Produced | 2022 |
| Provided To Others? | Yes |
| URL | https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/659/A1 |
| Title | LOFAR Two-metre Sky Survey Deep Fields DR1 |
| Description | VizieR online Data Catalogue associated with article published in journal Astronomy & Astrophysics with title 'The LOFAR Two Metre Sky Survey: Deep Fields Data Release 1. II. The ELAIS-N1 LOFAR deep field.' (bibcode: 2021A&A...648A...2S) |
| Type Of Material | Database/Collection of data |
| Year Produced | 2021 |
| Provided To Others? | Yes |
| URL | https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/648/A2 |
| Title | LOFAR Two-metre Sky Survey Deep Fields DR1 |
| Description | VizieR online Data Catalogue associated with article published in journal Astronomy & Astrophysics with title 'The LOFAR Two Metre Sky Survey: Deep Fields Data Release 1. III. Host-galaxy identifications and value added catalogues.' (bibcode: 2021A&A...648A...3K) |
| Type Of Material | Database/Collection of data |
| Year Produced | 2021 |
| Provided To Others? | Yes |
| URL | https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/648/A3 |
| Title | LoLSS-Deep Bootes 54MHz catalog |
| Description | VizieR online Data Catalogue associated with article published in journal Astronomy & Astrophysics with title 'The LOFAR LBA Sky Survey: Deep Fields I. The Bootes Field.' (bibcode: 2021A&A...655A..40W) |
| Type Of Material | Database/Collection of data |
| Year Produced | 2021 |
| Provided To Others? | Yes |
| URL | https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/655/A40 |
| Title | LoTSS Deep Fields DR1 photometric redshifts |
| Description | VizieR online Data Catalogue associated with article published in journal Astronomy & Astrophysics with title 'The LOFAR Two-metre Sky Survey: Deep Fields Data Release 1. IV. Photometric redshifts and stellar masses.' (bibcode: 2021A&A...648A...4D) |
| Type Of Material | Database/Collection of data |
| Year Produced | 2021 |
| Provided To Others? | Yes |
| URL | https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/648/A4 |
| Title | The nature of hyper luminous infrared galaxies |
| Description | VizieR online Data Catalogue associated with article published in journal Astronomy & Astrophysics with title 'The nature of hyper luminous infrared galaxies.' (bibcode: 2021A&A...654A.117G) |
| Type Of Material | Database/Collection of data |
| Year Produced | 2021 |
| Provided To Others? | Yes |
| URL | https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/654/A117 |
