DiRAC-3 Operations 2019-2022 - Edinburgh
Lead Research Organisation:
University of Edinburgh
Department Name: Sch of Physics and Astronomy
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Planned Impact
The DiRAC-3 Facility strategy for impact and innovation delivery is well-aligned with the UK government Industrial Strategy. As such, much of our societal and economic impact will continue to be driven by our engagements with industry. Each DiRAC-3 service provider has a local industrial strategy to deliver continued high levels of industrial engagement and to explore avenues to increase innovation and industrial returns over the next three years. Progress towards the industrial strategy goals will be monitored by the Service Management Boards and the DiRAC Technical Manager and reported to STFC via the DiRAC Oversight Committee.
The "Pathways to Impact" document attached to the lead JeS form for this proposal describes the overall DiRAC-3 industrial strategy, including our strategic goals and key performance indicators.
Examples of the expected impact of DiRAC-3 include:
Dissemination of best practice in High Performance Computing software engineering throughout the theoretical Particle Physics, Astronomy and Nuclear physics communities in the UK as well as to industry partners.
Training of the next generation of research scientists to tackle problems effectively on state-of-the- art of High Performance Computing facilities. Such skills are much in demand from high-tech industry and the cadre of highly-skilled, computationally literate individuals nurtured by DiRAC-3 will have influence beyond academia and will help to maintain the UK's scientific and economic leadership.
Development and delivery of co-design projects with industry partners to improve future generations of hardware and software.
Development of new techniques in the area of High Performance Data Analytics which will benefit industry partners and researchers in other fields such as biomedicine, biology, engineering, economics and social science, and the natural environment who can use these developments to improve research outcomes in their areas.
Sharing of best practice on the design and operation of distributed HPC facilities with UK National e-Infrastructure partners and providing leadership towards an integrated UKRI National e-Infrastructure. By supporting the uptake of emerging technologies by the DiRAC research communities, we will enable other research communities, both in academia and industry, to explore the value of using leading-edge technology to support their research workflows.
Engagement with the general public to promote interest in science, and to explain how our ability to solve complex problems using the latest computer technology leads to new scientific capabilities/insights. Engagement of this kind also naturally encourages the uptake of STEM subjects in schools.
The "Pathways to Impact" document attached to the lead JeS form for this proposal describes the overall DiRAC-3 industrial strategy, including our strategic goals and key performance indicators.
Examples of the expected impact of DiRAC-3 include:
Dissemination of best practice in High Performance Computing software engineering throughout the theoretical Particle Physics, Astronomy and Nuclear physics communities in the UK as well as to industry partners.
Training of the next generation of research scientists to tackle problems effectively on state-of-the- art of High Performance Computing facilities. Such skills are much in demand from high-tech industry and the cadre of highly-skilled, computationally literate individuals nurtured by DiRAC-3 will have influence beyond academia and will help to maintain the UK's scientific and economic leadership.
Development and delivery of co-design projects with industry partners to improve future generations of hardware and software.
Development of new techniques in the area of High Performance Data Analytics which will benefit industry partners and researchers in other fields such as biomedicine, biology, engineering, economics and social science, and the natural environment who can use these developments to improve research outcomes in their areas.
Sharing of best practice on the design and operation of distributed HPC facilities with UK National e-Infrastructure partners and providing leadership towards an integrated UKRI National e-Infrastructure. By supporting the uptake of emerging technologies by the DiRAC research communities, we will enable other research communities, both in academia and industry, to explore the value of using leading-edge technology to support their research workflows.
Engagement with the general public to promote interest in science, and to explain how our ability to solve complex problems using the latest computer technology leads to new scientific capabilities/insights. Engagement of this kind also naturally encourages the uptake of STEM subjects in schools.
Organisations
Publications
Astoul A
(2023)
Tidally Excited Inertial Waves in Stars and Planets: Exploring the Frequency-dependent and Averaged Dissipation with Nonlinear Simulations
in The Astrophysical Journal Letters
Astoul A
(2022)
The effects of non-linearities on tidal flows in the convective envelopes of rotating stars and planets in exoplanetary systems
in Monthly Notices of the Royal Astronomical Society
Attanasio F
(2020)
Complex Langevin simulations and the QCD phase diagram: recent developments
in The European Physical Journal A
Attanasio F
(2022)
Equation of state from complex Langevin simulations
in EPJ Web of Conferences
Aumann T
(2021)
Quenching of single-particle strength from direct reactions with stable and rare-isotope beams
in Progress in Particle and Nuclear Physics
Aurrekoetxea J
(2023)
Oscillon formation during inflationary preheating with general relativity
in Physical Review D
Aurrekoetxea J
(2022)
Where is the ringdown: Reconstructing quasinormal modes from dispersive waves
in Physical Review D
Aurrekoetxea J
(2024)
GRDzhadzha: A code for evolving relativistic matter on analytic metric backgrounds
in Journal of Open Source Software
Aurrekoetxea J
(2024)
Self-interacting scalar dark matter around binary black holes
in Physical Review D
Aurrekoetxea J
(2024)
Effect of Wave Dark Matter on Equal Mass Black Hole Mergers
in Physical Review Letters
Aurrekoetxea J
(2020)
The effects of potential shape on inhomogeneous inflation
in Journal of Cosmology and Astroparticle Physics
Aurrekoetxea J
(2020)
Coherent gravitational waveforms and memory from cosmic string loops
in Classical and Quantum Gravity
Aurrekoetxea JC
(2024)
Revisiting the Cosmic String Origin of GW190521.
in Physical review letters
Aviles A
(2020)
Marked correlation functions in perturbation theory
in Journal of Cosmology and Astroparticle Physics
Badger S
(2023)
Isolated photon production in association with a jet pair through next-to-next-to-leading order in QCD
in Journal of High Energy Physics
Baek G
(2020)
Radiative Transfer Modeling of EC 53: An Episodically Accreting Class I Young Stellar Object
in The Astrophysical Journal
Bahé Y
(2022)
The importance of black hole repositioning for galaxy formation simulations
in Monthly Notices of the Royal Astronomical Society
Bahé Y
(2021)
Strongly lensed cluster substructures are not in tension with ?CDM
in Monthly Notices of the Royal Astronomical Society
Balan S
(2025)
Resonant or asymmetric: the status of sub-GeV dark matter
in Journal of Cosmology and Astroparticle Physics
Ballabio G
(2023)
[O i ] 6300 Å emission as a probe of external photoevaporation of protoplanetary discs
in Monthly Notices of the Royal Astronomical Society
Ballabio G
(2021)
HD 143006: circumbinary planet or misaligned disc?
in Monthly Notices of the Royal Astronomical Society
Ballard D
(2024)
Gravitational imaging through a triple source plane lens: revisiting the ?CDM-defying dark subhalo in SDSSJ0946+1006
in Monthly Notices of the Royal Astronomical Society
Bamber J
(2021)
Quasinormal modes of growing dirty black holes
in Physical Review D
Bamber J
(2023)
Black hole merger simulations in wave dark matter environments
in Physical Review D
Bamber J
(2021)
Growth of accretion driven scalar hair around Kerr black holes
in Physical Review D
| Title | Supplemental data for the report "Optimisation of lattice simulations energy efficiency" |
| Description | Supplemental data for the report "Optimisation of lattice simulations energy efficiency". Also available as a git repository. It contains: Full copy of benchmark run directories Power monitoring scripts Power monitoring raw measurements Power monitoring data analysis and results used in the report For a more complete description, please see the README.md file. |
| Type Of Material | Database/Collection of data |
| Year Produced | 2022 |
| Provided To Others? | Yes |
| URL | https://zenodo.org/record/7057645 |
| Title | Supplemental data for the report "Optimisation of lattice simulations energy efficiency" |
| Description | Supplemental data for the report "Optimisation of lattice simulations energy efficiency". Also available as a git repository. It contains: Full copy of benchmark run directories Power monitoring scripts Power monitoring raw measurements Power monitoring data analysis and results used in the report For a more complete description, please see the README.md file. |
| Type Of Material | Database/Collection of data |
| Year Produced | 2022 |
| Provided To Others? | Yes |
| URL | https://zenodo.org/record/7057644 |
