DiRAC-3 Operations 2019-2022 - Edinburgh
Lead Research Organisation:
University of Edinburgh
Department Name: Sch of Physics and Astronomy
Abstract
Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
Planned Impact
The DiRAC-3 Facility strategy for impact and innovation delivery is well-aligned with the UK government Industrial Strategy. As such, much of our societal and economic impact will continue to be driven by our engagements with industry. Each DiRAC-3 service provider has a local industrial strategy to deliver continued high levels of industrial engagement and to explore avenues to increase innovation and industrial returns over the next three years. Progress towards the industrial strategy goals will be monitored by the Service Management Boards and the DiRAC Technical Manager and reported to STFC via the DiRAC Oversight Committee.
The "Pathways to Impact" document attached to the lead JeS form for this proposal describes the overall DiRAC-3 industrial strategy, including our strategic goals and key performance indicators.
Examples of the expected impact of DiRAC-3 include:
Dissemination of best practice in High Performance Computing software engineering throughout the theoretical Particle Physics, Astronomy and Nuclear physics communities in the UK as well as to industry partners.
Training of the next generation of research scientists to tackle problems effectively on state-of-the- art of High Performance Computing facilities. Such skills are much in demand from high-tech industry and the cadre of highly-skilled, computationally literate individuals nurtured by DiRAC-3 will have influence beyond academia and will help to maintain the UK's scientific and economic leadership.
Development and delivery of co-design projects with industry partners to improve future generations of hardware and software.
Development of new techniques in the area of High Performance Data Analytics which will benefit industry partners and researchers in other fields such as biomedicine, biology, engineering, economics and social science, and the natural environment who can use these developments to improve research outcomes in their areas.
Sharing of best practice on the design and operation of distributed HPC facilities with UK National e-Infrastructure partners and providing leadership towards an integrated UKRI National e-Infrastructure. By supporting the uptake of emerging technologies by the DiRAC research communities, we will enable other research communities, both in academia and industry, to explore the value of using leading-edge technology to support their research workflows.
Engagement with the general public to promote interest in science, and to explain how our ability to solve complex problems using the latest computer technology leads to new scientific capabilities/insights. Engagement of this kind also naturally encourages the uptake of STEM subjects in schools.
The "Pathways to Impact" document attached to the lead JeS form for this proposal describes the overall DiRAC-3 industrial strategy, including our strategic goals and key performance indicators.
Examples of the expected impact of DiRAC-3 include:
Dissemination of best practice in High Performance Computing software engineering throughout the theoretical Particle Physics, Astronomy and Nuclear physics communities in the UK as well as to industry partners.
Training of the next generation of research scientists to tackle problems effectively on state-of-the- art of High Performance Computing facilities. Such skills are much in demand from high-tech industry and the cadre of highly-skilled, computationally literate individuals nurtured by DiRAC-3 will have influence beyond academia and will help to maintain the UK's scientific and economic leadership.
Development and delivery of co-design projects with industry partners to improve future generations of hardware and software.
Development of new techniques in the area of High Performance Data Analytics which will benefit industry partners and researchers in other fields such as biomedicine, biology, engineering, economics and social science, and the natural environment who can use these developments to improve research outcomes in their areas.
Sharing of best practice on the design and operation of distributed HPC facilities with UK National e-Infrastructure partners and providing leadership towards an integrated UKRI National e-Infrastructure. By supporting the uptake of emerging technologies by the DiRAC research communities, we will enable other research communities, both in academia and industry, to explore the value of using leading-edge technology to support their research workflows.
Engagement with the general public to promote interest in science, and to explain how our ability to solve complex problems using the latest computer technology leads to new scientific capabilities/insights. Engagement of this kind also naturally encourages the uptake of STEM subjects in schools.
Organisations
Publications
Banerjee A
(2024)
Atmospheric Retrievals Suggest the Presence of a Secondary Atmosphere and Possible Sulfur Species on L98-59 d from JWST Nirspec G395H Transmission Spectroscopy
in The Astrophysical Journal Letters
Banfi A
(2024)
Higgs interference effects in top-quark pair production in the 1HSM
in Journal of High Energy Physics
Banfi A
(2024)
A POWHEG generator for deep inelastic scattering
in Journal of High Energy Physics
Bantilan H
(2020)
Real-Time Dynamics of Plasma Balls from Holography.
in Physical review letters
Bantilan H
(2019)
End point of nonaxisymmetric black hole instabilities in higher dimensions
in Physical Review D
Bantilan H
(2021)
Cauchy evolution of asymptotically global AdS spacetimes with no symmetries
in Physical Review D
Baraffe I
(2022)
Local heating due to convective overshooting and the solar modelling problem
in Astronomy & Astrophysics
Baraffe I
(2021)
Two-dimensional simulations of solar-like models with artificially enhanced luminosity I. Impact on convective penetration
in Astronomy & Astrophysics
Baraffe I
(2023)
A study of convective core overshooting as a function of stellar mass based on two-dimensional hydrodynamical simulations
in Monthly Notices of the Royal Astronomical Society
Barausse E
(2020)
Prospects for fundamental physics with LISA
in General Relativity and Gravitation
Barnes D
(2021)
Characterizing hydrostatic mass bias with mock-X
in Monthly Notices of the Royal Astronomical Society
Barone T
(2024)
Gravitational lensing reveals cool gas within 10-20 kpc around a quiescent galaxy
in Communications Physics
Barrera M
(2023)
The MillenniumTNG Project: semi-analytic galaxy formation models on the past lightcone
in Monthly Notices of the Royal Astronomical Society
Barrera-Hinojosa C
(2022)
Looking for a twist: probing the cosmological gravitomagnetic effect via weak lensing-kSZ cross-correlations
in Monthly Notices of the Royal Astronomical Society
Barrera-Hinojosa C
(2020)
GRAMSES: a new route to general relativistic N -body simulations in cosmology. Part II. Initial conditions
in Journal of Cosmology and Astroparticle Physics
Barrera-Hinojosa C
(2021)
Vector modes in ?CDM: the gravitomagnetic potential in dark matter haloes from relativistic N -body simulations
in Monthly Notices of the Royal Astronomical Society
Barrera-Hinojosa C
(2020)
GRAMSES: a new route to general relativistic N -body simulations in cosmology. Part I. Methodology and code description
in Journal of Cosmology and Astroparticle Physics
Bartlett D
(2021)
Spatially offset black holes in the Horizon-AGN simulation and comparison to observations
in Monthly Notices of the Royal Astronomical Society
Bartlett D
(2023)
Marginalised Normal Regression: Unbiased curve fitting in the presence of x-errors
in The Open Journal of Astrophysics
Bartlett D
(2021)
Calibrating galaxy formation effects in galactic tests of fundamental physics
in Physical Review D
Bartlett D
(2021)
Constraints on Galileons from the positions of supermassive black holes
in Physical Review D
Bartlett D
(2024)
Exhaustive Symbolic Regression
in IEEE Transactions on Evolutionary Computation
Bartlett-Tisdall S
(2024)
Bootstrapping boundary QED. Part I
in Journal of High Energy Physics
Bastian N
(2020)
The globular cluster system mass-halo mass relation in the E-MOSAICS simulations
in Monthly Notices of the Royal Astronomical Society
Bate M
(2020)
Photoionizing feedback in spiral arm molecular clouds
in Monthly Notices of the Royal Astronomical Society
| Title | Supplemental data for the report "Optimisation of lattice simulations energy efficiency" |
| Description | Supplemental data for the report "Optimisation of lattice simulations energy efficiency". Also available as a git repository. It contains: Full copy of benchmark run directories Power monitoring scripts Power monitoring raw measurements Power monitoring data analysis and results used in the report For a more complete description, please see the README.md file. |
| Type Of Material | Database/Collection of data |
| Year Produced | 2022 |
| Provided To Others? | Yes |
| URL | https://zenodo.org/record/7057645 |
| Title | Supplemental data for the report "Optimisation of lattice simulations energy efficiency" |
| Description | Supplemental data for the report "Optimisation of lattice simulations energy efficiency". Also available as a git repository. It contains: Full copy of benchmark run directories Power monitoring scripts Power monitoring raw measurements Power monitoring data analysis and results used in the report For a more complete description, please see the README.md file. |
| Type Of Material | Database/Collection of data |
| Year Produced | 2022 |
| Provided To Others? | Yes |
| URL | https://zenodo.org/record/7057644 |
