Experimental Particle Physics Rolling Grant 2009-2014
Lead Research Organisation:
Lancaster University
Department Name: Physics
Abstract
This research is aimed at understanding the properties of the basic building blocks of the Universe (the elementary particles) and the nature of the fundamental forces which govern the interactions of these particles. In so doing, deep insights will be gained about the origin and evolution of the Universe, especially in the first moments after the Big Bang. The Lancaster research programme covers all the main types of accelerator facilities and is based on hadron collider physics with the Tevatron (Fermilab) and LHC (CERN) machines, and the observation of long baseline neutrino oscillations in Japan. All of this work will be underpinned by Lancaster's expertise in characterising and understanding the properties of heavily irradiated silicon particle detectors, in operating high performance computing facilities on the Grid and in writing offline event reconstruction software. The hadron collider physics is expected to reveal detailed properties of B hadrons (containing heavy b-quarks) including the mixing of neutral B mesons containing strange quarks, and CP violation which is related to the existence of the matter-antimatter asymmetry in the Universe. Searches for new physics at the LHC will focus on understanding the origin of mass (and the role of the Higgs boson), the existence of new symmetries of nature (e.g. supersymmetry) and extra spatial dimensions. The neutrino oscillations programme is expected to provide important information about the masses of and the amount of mixing amongst the three known species of neutrinos. If the appearance of electron neutrinos can be observed in a muon neutrino beam then it may be possible, in a further phase of the research, to establish the existence of CP violation in the neutrino sector of the Standard Model. This could have wide reaching implications for the understanding of the matter-antimatter asymmetry of the Universe. The development of new particle accelerator technology for high energy particle physics and a broad range of alternaive applications is the mission of the Cockcroft Institute. The Lancaster group were co-founders of the Institute and remain commited to supporting its evolution.
Organisations
Publications
Aaltonen T
(2012)
Search for neutral Higgs bosons in events with multiple bottom quarks at the Tevatron
in Physical Review D
Abazov V
(2009)
Relative rates of B meson decays into ? ( 2 S ) and J / ? mesons
in Physical Review D
Abazov V
(2012)
Measurement of the W Z and Z Z production cross sections using leptonic final states in 8.6 fb - 1 of p p ¯ collisions
in Physical Review D
Abazov V
(2011)
Measurements of single top quark production cross sections and | V t b | in p p ¯ collisions at s = 1.96 TeV
in Physical Review D
Abazov V
(2012)
Search for W H associated production in p p ¯ collisions at s = 1.96 TeV
in Physical Review D
Aad G
(2014)
Search for dark matter in events with a Z boson and missing transverse momentum in p p collisions at s = 8 TeV with the ATLAS detector
in Physical Review D
Abazov V
(2013)
Search for Higgs boson production in oppositely charged dilepton and missing energy final states in 9.7 fb - 1 of p p ¯ collisions at s = 1.96 TeV
in Physical Review D
Abazov V
(2009)
Measurement of the top quark mass in final states with two leptons
in Physical Review D
Abazov V
(2013)
Measurement of the ratio of differential cross sections s ( p p ¯ ? Z + b jet ) / s ( p p ¯ ? Z + jet ) in p p ¯ collisions at s = 1.96 TeV
in Physical Review D
Aad G
(2011)
Search for contact interactions in dimuon events from p p collisions at s = 7 TeV with the ATLAS detector
in Physical Review D
Aaltonen T
(2013)
Higgs boson studies at the Tevatron
in Physical Review D
Aaltonen T
(2014)
Combination of measurements of the top-quark pair production cross section from the Tevatron Collider
in Physical Review D
Abe K
(2013)
Evidence of electron neutrino appearance in a muon neutrino beam
in Physical Review D
Abazov V
(2011)
Publisher's Note: Search for C P violation in B s 0 ? µ + D s - X decays in p p ¯ collisions at s = 1.96 TeV [Phys. Rev. D 82 , 012003 (2010)]
in Physical Review D
Aad G
(2012)
Search for resonant top quark plus jet production in t t ¯ + jets events with the ATLAS detector in p p collisions at s = 7 TeV
in Physical Review D
Aad G
(2014)
Search for a multi-Higgs-boson cascade in W + W - b b ¯ events with the ATLAS detector in p p collisions at s = 8 TeV
in Physical Review D
Abazov V
(2013)
Measurement of the asymmetry in angular distributions of leptons produced in dilepton t t ¯ final states in p p ¯ collisions at s = 1.96 TeV
in Physical Review D
Abazov VM
(2010)
Search for the associated production of a b quark and a neutral supersymmetric Higgs boson that decays into tau pairs.
in Physical review letters
Abazov VM
(2009)
Direct measurement of the W boson width.
in Physical review letters
Abazov VM
(2012)
Measurements of WW and WZ production in W + jets final states in pp collisions.
in Physical review letters
Abazov VM
(2012)
Search for doubly charged Higgs boson pair production in pp¯ collisions at vs=1.96 TeV.
in Physical review letters
Abazov VM
(2009)
Measurement of the WW production cross section with dilepton final states in pp collisions at square root(s) = 1.96 TeV and limits on anomalous trilinear gauge couplings.
in Physical review letters
Abazov VM
(2011)
Search for the standard model Higgs boson in the H?WW?l?q'q decay channel.
in Physical review letters
Abazov V
(2012)
Search for the Standard Model Higgs Boson in Associated W H Production in 9.7 fb - 1 of p p ¯ Collisions with the D0 Detector
in Physical Review Letters
Related Projects
| Project Reference | Relationship | Related To | Start | End | Award Value |
|---|---|---|---|---|---|
| ST/H00095X/1 | 30/09/2009 | 30/03/2011 | £808,725 | ||
| ST/H00095X/2 | Transfer | ST/H00095X/1 | 30/09/2010 | 29/09/2012 | £5,501,044 |
| Description | The discovery of the Higgs boson at the LHC and the first observation of neutrinos of one type (muon neutrinos) changing into neutrinos of another type (electron neutrinos). |
| Exploitation Route | The research is ongoing and will lead to deeper insights into nature and the properties of the fundamental particles and forces. |
| Sectors | Education |
| URL | http://www.lancaster.ac.uk/physics/research/experimental-particle-physics/ |
